Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Optimised synthesis of ZnO-nano-fertiliser through green chemistry: boosted growth dynamics of economically important L. esculentum

Mounting-up economic losses to annual crops yield due to micronutrient deficiency, fertiliser inefficiency and increasing microbial invasions (e.g. Xanthomonas cempestri attack on tomatoes) are needed to be solved via nano-biotechnology. So keeping this in view, the authors’ current study presents the new horizon in the field of nano-fertiliser with highly nutritive and preservative effect of green fabricated zinc oxide-nanostructures (ZnO-NSs) during Lycopersicum esculentum (tomato) growth dynamics. ZnO-NS prepared via green chemistry possesses highly homogenous crystalline structures well-characterised through ultraviolet and visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscope. The ZnO-NS average size was found as small as 18 nm having a crystallite size of 5 nm. L. esculentum were grown in different concentrations of ZnO-NS to examine the different morphological parameters includes time of seed germination, germination percentage, the number of plant leaves, the height of the plant, average number of branches, days count for flowering and fruiting time period along with fruit quantity. Promising results clearly predict that bio-fabricated ZnO-NS at optimum concentration resulted as growth booster and dramatically triggered the plant yield.

References

    1. 1)
      • 1. Rockström, J.: ‘Resilience building and water demand management for drought mitigation’, Phys. Chem. Earth, A/B/C, 2003, 28, pp. 869877.
    2. 2)
      • 25. Westfall, C.S., Muehler, A.M., Jez, J.M.: ‘Enzyme action in the regulation of plant hormone responses’, J. Biol. Chem., 2013, 288, (27), pp. 1930419311.
    3. 3)
      • 14. Tariq Jan, J.I., Ismail, M., Zakaullah, M., et al: ‘Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria’, Int. J. Nanomed., 2013, 8, p. 3679.
    4. 4)
      • 19. Singh, A., Gupta, A.K., Srivastava, R.N., et al: ‘Response of zinc and manganese to sugarcane’, Sugar Tech, 2002, 4, (1–2), pp. 7476.
    5. 5)
      • 3. Mori, A., Kirk, G.J., Lee, J.S., et al: ‘Rice genotype differences in tolerance of zinc-deficient soils: evidence for the importance of root-induced changes in the rhizosphere’, Front. Plant Sci., 2016, 6, p. 1160.
    6. 6)
      • 7. Nie, Z., Petukhova, A., Kumacheva, E.: ‘Properties and emerging applications of self-assembled structures made from inorganic nanoparticles’, Nat. Nanotechnol., 2010, 5, (1), pp. 1525.
    7. 7)
      • 18. Hasani, M., Zamani, Z., Savaghebi, G., et al: ‘Effects of zinc and manganese as foliar spray on pomegranate yield, fruit quality and leaf minerals’, J. Soil Sci. Plant Nutr., 2012, 12, (3), pp. 471480.
    8. 8)
      • 28. Chang, Y.N., Zhang, M., Xia, L., et al: ‘The toxic effects and mechanisms of CuO and ZnO nanoparticles’, Materials, 2012, 5, (12), pp. 28502871.
    9. 9)
      • 4. Hafeez, B., Khanif, Y.M., Saleem, M.: ‘Role of zinc in plant nutrition – a review. Am. J. Exp. Agric., 2013, 3, p. 374.
    10. 10)
      • 21. Hacisalihoglu, G., Hart, J.J., Wang, Y.H., et al: ‘Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat’, Plant Physiol., 2003, 131, (2), pp. 595602.
    11. 11)
      • 6. Anwaar, S., Maqbool, Q., Jabeen, N., et al: ‘The effect of green synthesized CuO nanoparticles on callogenesis and regeneration of Oryza sativa L’, Front. Plant Sci., 2016, 7, p. 1330.
    12. 12)
      • 15. Khalil, M.I., Al-Qunaibit, M.M., Al-Zahem, A.M., et al: ‘Synthesis and characterization of ZnO nanoparticles by thermal decomposition of a curcumin zinc complex’, Arab. J. Chem., 2014, 7, (6), pp. 11781184.
    13. 13)
      • 8. Maqbool, Q., Iftikhar, S., Nazar, M., et al: ‘Green fabricated CuO nanobullets via Olea europaea leaf extract shows auspicious antimicrobial potential’, IET Nanobiotechnol., 2017, 11, (4), pp. 463468.
    14. 14)
      • 2. Savci, S.: ‘An agricultural pollutant: chemical fertilizer’, Int. J. Environ. Sci. Dev., 2012, 3, p. 73.
    15. 15)
      • 10. Mirnezhad, M., Romero-González, R.R., Leiss, K.A., et al: ‘Metabolomic analysis of host plant resistance to thrips in wild and cultivated tomatoes’, Phytochem. Anal., 2010, 21, (1), pp. 110117.
    16. 16)
      • 26. Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., et al: ‘Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut’, J. Plant Nutr., 2012, 35, (6), pp. 905927.
    17. 17)
      • 9. Wang, X., Yang, X., Chen, S., et al: ‘Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis’, Front. Plant Sci., 2016, 6, pp. 12431244.
    18. 18)
      • 20. Badger, M.R., Price, G.D.: ‘The role of carbonic anhydrase in photosynthesis’, Annu. Rev. Plant Biol., 1994, 45, (1), pp. 369392.
    19. 19)
      • 13. Baruah, S., Sinha, S.S., Ghosh, B., et al: ‘Photoreactivity of ZnO nanoparticles in visible light: effect of surface states on electron transfer reaction’, J. Appl. Phys., 2009, 105, (7), p. 074308.
    20. 20)
      • 22. Maret, W.: ‘Zinc biochemistry: from a single zinc enzyme to a key element of life’, Adv. Nutr., Int. Rev. J., 2013, 4, (1), pp. 8291.
    21. 21)
      • 11. Ilahy, R., Hdider, C., Lenucci, M.S., et al: ‘Phytochemical composition and antioxidant activity of high-lycopene tomato (Solanum lycopersicum L.) cultivars grown in Southern Italy’, Sci. Horticulturae, 2011, 127, (3), pp. 255261.
    22. 22)
      • 16. Fernández-Escobar, R., Benlloch, M., Herrera, E., et al: ‘Effect of traditional and slow-release N fertilizers on growth of olive nursery plants and N losses by leaching’, Sci. Horticulturae, 2004, 101, (1), pp. 3949.
    23. 23)
      • 23. Winkel, B.S.: ‘When an enzyme isn't just an enzyme anymore’, J. Exp. Bot., 2017, 68, (7), pp. 13871389.
    24. 24)
      • 24. Sillanpää, M., Chaker, N.: ‘Biofuels and bioenergy’, ‘A sustainable bioeconomy’ (Springer International Publishing), 2017, pp. 79139.
    25. 25)
      • 12. Maqbool, Q., Nazar, M., Naz, S., et al: ‘Antimicrobial potential of green synthesized CeO2 nanoparticles from Olea europaea leaf extract’, Int. J. Nanomed., 2016, 11, p. 5015.
    26. 26)
      • 5. Cakmak, I.: ‘Tansley review no. 111 possible roles of zinc in protecting plant cells from damage by reactive oxygen species’, New Phytol., 2000, 146, (2), pp. 185205.
    27. 27)
      • 17. Henriques, A.R., Chalfun–Junior, A., Aarts, M.: ‘Strategies to increase zinc deficiency tolerance and homeostasis in plants’, Braz. J. Plant Physiol., 2012, 24, (1), pp. 38.
    28. 28)
      • 27. Raskar, S.V., Laware, S.L.: ‘Effect of zinc oxide nanoparticles on cytology and seed germination in onion’, Int. J. Curr. Microbiol. Appl. Sci., 2014, 3, (2), pp. 467473.
    29. 29)
      • 29. Fard, J.K., Jafari, S., Eghbal, M.A.: ‘A review of molecular mechanisms involved in toxicity of nanoparticles’, Adv. Pharm. Bull., 2015, 5, (4), p. 447.
    30. 30)
      • 30. Bahadar, H., Maqbool, F., Niaz, K., et al: ‘Toxicity of nanoparticles and an overview of current experimental models’, Iran. Biomed. J., 2016, 20, (1), p. 1.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0094
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0094
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address