Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Nutratherapeutics approach against cancer: tomato-mediated synthesised gold nanoparticles

In this study, an eco-friendly biosynthesis of stable gold nanoparticles (T-GNPs) was carried out using different concentrations of tomato juice (nutraceuticals) as a reducing agent and tetrachloroauric acid as a metal precursor to explore their potential application in cancer therapeutics. The synthesis of T-GNPs was monitored by UV-visible absorption spectroscopy, which unveiled their formation by exhibiting the typical surface plasmon absorption maxima at 522 nm. The size of T-GNPs was found to be 10.86 ± 0.6 nm. T-GNPs were characterised by dynamic light scattering, zeta potential, transmission electron microscopy analysis and Fourier transform infrared spectroscopy. T-GNPs were further investigated for their anti-cancer activity against human lung carcinoma cell line (A 549) and human cervical cancer cell line wherein the IC50 values were found to be 0.286 and 0.200 mM, respectively. T-GNPs inhibited the growth of cancer cells by generating ROS and inducing apoptosis. T-GNPs were found highly effective by virtue of their size, metallic property and capping molecules. Thus, this study opens up the prospects of using nutraceutical (tomato juice) as nutratherapeutic agent (T-GNPs) against critical diseases like lung cancer and cervical cancer.

References

    1. 1)
      • 25. Calzolai, L., Franchini, F., Gilliland, D., et al: ‘Protein-nanoparticle interaction: identification of the ubiquitin-gold nanoparticle interaction site’, Nano Lett.., 2010, 10, pp. 31013105.
    2. 2)
      • 21. Satish, K.N., Nripen, C., Ravi, S., et al: ‘Green nanotechnology from tea: phytochemicals in tea as building blocks for production of bio-compatible gold nanoparticles’, J. Mat. Chem., 2009, 19, pp. 29122920.
    3. 3)
      • 3. Chandrasekharan, N., Kamat, P.V.: ‘Improving the photoelectrochemical performance of nanostructured tio2 films by adsorption of gold nanoparticles’, J. Phys. Chem. B, 2000, 104, pp. 1085110857.
    4. 4)
      • 37. Dykman, L.A., Khlebtsov, N.G.: ‘Gold nanoparticles in biology and medicine: recent advances and prospects’, Acta Nat., 2011, 3, pp. 3455.
    5. 5)
      • 24. Dhar-Mascareno, M., Carcamo, J.M., Golde, D.W.: ‘Hypoxia-reoxygenation-induced mitochondrial damage and apoptosis in human endothelial cells are inhibited by vitamin C’, Free Radic. Biol. Med., 2005, 38, pp. 13111322.
    6. 6)
      • 16. Rosangkima, G., Prasad, S.B.: ‘Anti-tumour activity of some plants from Meghalaya and Mizoram against murine ascites Doltons lymphoma’, Indian J. Exp. Biol., 2004, 42, pp. 981988.
    7. 7)
      • 2. Krolikowska, A., Kudelski, A., Michota, A., et al: ‘SERS studies on the structure of thioglycolic acid monolayers on silver and gold’, J. Surf. Sci., 2003, 532, pp. 227232.
    8. 8)
      • 4. Zaniewski, A.M., Schriver, M., Lee, J.G., et al: ‘Electronic and optical properties of metal-nanoparticle filled graphene sandwiches’, Appl. Phys. Lett., 2013, 102, p. 023108.
    9. 9)
      • 13. Huang, J., Lin, L., Sun, D., et al: ‘Bio-inspired synthesis of metal nanomaterials and applications’, Chem. Soc. Rev., 2015, 44, pp. 63306374.
    10. 10)
      • 36. Nel, A., Xia, T., Madler, L., et al: ‘Toxic potential of materials at the nanolevel’, Science, 2006, 311, pp. 622627.
    11. 11)
      • 29. Bilton, R., Gerber, M., Grolier, P., et al: ‘The white book on antioxidants in tomatoes and tomato products and their health benefits’. Final report of the Concerted Action Fair CT97-3233 (CMITI Sarl: Avignon Cedex, France, 2001).
    12. 12)
      • 32. Birt, D.F., Hendrich, S., Wang, W.: ‘Dietary agents in cancer prevention: flavonoids and isoflavonoids’, Pharmacol. Ther., 2001, 90, pp. 157177.
    13. 13)
      • 26. Mock, J.J., Barbic, M., Smith, D.R., et al: ‘Shape effects in plasmon resonance of individual colloidal silver nanoparticles’, J. Chem. Phys., 2002, 116, pp. 67556759.
    14. 14)
      • 9. Mohammadinejad, R., Karimi, S., Iravani, S., et al: ‘Plant-derived nanostructured: types and applications’, Green Chem., 2016, 18, pp. 2052.
    15. 15)
      • 22. Singh, P., Kim, Y.J., Zhang, D., et al: ‘Biological synthesis of nanoparticles from plants and microorganisms’, Trends Biotechnol., 2016, 34, pp. 588599.
    16. 16)
      • 7. Wu, R., Wang, C., Shen, J., et al: ‘A role for biosynthetic CdS quantum dots in extracellular electron transfer of Saccharomyces cerevisiae’, Process Biochem., 2015, 50, pp. 20612065.
    17. 17)
      • 34. Stan, R.V.: ‘Structure and function of endothelial caveolae’, Microsc. Res. Tech., 2002, 57, pp. 350364.
    18. 18)
      • 30. Olso, J.A.: ‘The conversion of beta-carotene into vitamin A’, J. Nutr., 1989, 119, pp. 105108.
    19. 19)
      • 38. Kappus, H.: ‘Oxidative stress in chemical toxicity’, Arch. Toxicol., 1987, 60, pp. 144149.
    20. 20)
      • 15. Sharma, M., Pandey, G.: ‘Ethnomedicinal plants for prevention and treatment of tumours’, Int. J. Green Pharm., 2009, 3, pp. 25.
    21. 21)
      • 1. Lin, S.M., Lin, F.Q., Guo, H.Q., et al: ‘Surface states induced photoluminescence from Mn2+ doped CdS nanoparticles’, Solid State Common, 2000, 115, pp. 615618.
    22. 22)
      • 27. Khan, S., Rizvi, S.M.D., Avaish, M., et al: ‘A novel process for size controlled biosynthesis of gold nanoparticles using bromelain’, Mater. Lett., 2015, 159, pp. 373376.
    23. 23)
      • 31. Van der Logt, E.M., Roelofs, H.M., Nagengast, F.M., et al: ‘Induction of rat hepatic and intestinal UDP-glucuronosyl transferases by naturally occurring dietary anticarcinogens’, Carcinogenesis, 2003, 24, pp. 16511656.
    24. 24)
      • 23. Gould, W.A.: ‘Tomato production, processing and quality evaluation’ (Avi Publishing Company, Westport, Co., 1983), p. 445.
    25. 25)
      • 8. Gholami-Shabani, M., Shams-Ghahfarokhi, M., Gholami-Shabani, Z., et al: ‘Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach’, Process Biochem., 2015, 50, pp. 10761085.
    26. 26)
      • 11. Ovais, M., Raza, A., Naz, S., et al: ‘Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics’, Appl. Microbiol. Biotechnol., 2017, 101, (9), pp. 35513565.
    27. 27)
      • 33. Mayor, S., Pagano, R.E.: ‘Pathways of clathrinindependent endocytosis’, Nat. Rev. Mol. Cell Biol., 2007, 8, pp. 603612.
    28. 28)
      • 20. Shankar, S.S., Rai, A., Ahmad, A., et al: ‘Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth’, J. Coll. Int. Sci., 2004, 275, pp. 496502.
    29. 29)
      • 10. Song, J.Y., Jang, H.K., Kim, B.S.: ‘Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts’, Process Biochem., 2009, 44, pp. 11331138.
    30. 30)
      • 6. Peralta-Videa, J.R., Lopez-Moreno, L., Huang, Y., et al: ‘Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis?’, Nanotechnol. Environ. Eng., 2016, 1, p. 4.
    31. 31)
      • 19. Dwivedi, A.D., Gopal, K.: ‘Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract’, Colloids Surf A, 2010, 369, pp. 2733.
    32. 32)
      • 12. Ovais, M., Khalil, A.T., Raza, A., et al: ‘Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics’, Nanomedicine, 2016, 12, (23), pp. 31573177.
    33. 33)
      • 5. Shivaji, S., Madhu, S., Singh, S.: ‘Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria’, Process Biochem., 2011, 46, pp. 18001807.
    34. 34)
      • 18. Narayanan, K.B., Sakthivel, N.: ‘Coriander leaf mediated biosynthesis of gold nanoparticles’, Mat. Lett., 2008, 62, pp. 45884590.
    35. 35)
      • 17. Pandey, G., Madhuri, S.: ‘Therapeutic approach to cancer by vegetables with antioxidant activity’, Int. Res. J. Pharm., 2011, 2, pp. 1013.
    36. 36)
      • 14. Shankar, S.S., Rai, A., Ankamwar, B., et al: ‘Biological synthesis of triangular gold nanoprisms’, Nat. Mater., 2004, 3, pp. 482488.
    37. 37)
      • 28. George, B., Kaur, C., Khurdiya, D.S., et al: ‘Antioxidants in tomato (Lycopersicon esculentum) as a function of genotype’, Food Chem., 2004, 84, pp. 4551.
    38. 38)
      • 35. Buono, C., Anzinger, J.J., Amar, M., et al: ‘Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions’, J. Clin. Invest., 2009, 119, pp. 13731381.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0068
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address