http://iet.metastore.ingenta.com
1887

Nutratherapeutics approach against cancer: tomato-mediated synthesised gold nanoparticles

Nutratherapeutics approach against cancer: tomato-mediated synthesised gold nanoparticles

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, an eco-friendly biosynthesis of stable gold nanoparticles (T-GNPs) was carried out using different concentrations of tomato juice (nutraceuticals) as a reducing agent and tetrachloroauric acid as a metal precursor to explore their potential application in cancer therapeutics. The synthesis of T-GNPs was monitored by UV-visible absorption spectroscopy, which unveiled their formation by exhibiting the typical surface plasmon absorption maxima at 522 nm. The size of T-GNPs was found to be 10.86 ± 0.6 nm. T-GNPs were characterised by dynamic light scattering, zeta potential, transmission electron microscopy analysis and Fourier transform infrared spectroscopy. T-GNPs were further investigated for their anti-cancer activity against human lung carcinoma cell line (A 549) and human cervical cancer cell line wherein the IC50 values were found to be 0.286 and 0.200 mM, respectively. T-GNPs inhibited the growth of cancer cells by generating ROS and inducing apoptosis. T-GNPs were found highly effective by virtue of their size, metallic property and capping molecules. Thus, this study opens up the prospects of using nutraceutical (tomato juice) as nutratherapeutic agent (T-GNPs) against critical diseases like lung cancer and cervical cancer.

References

    1. 1)
      • 1. Lin, S.M., Lin, F.Q., Guo, H.Q., et al: ‘Surface states induced photoluminescence from Mn2+ doped CdS nanoparticles’, Solid State Common, 2000, 115, pp. 615618.
    2. 2)
      • 2. Krolikowska, A., Kudelski, A., Michota, A., et al: ‘SERS studies on the structure of thioglycolic acid monolayers on silver and gold’, J. Surf. Sci., 2003, 532, pp. 227232.
    3. 3)
      • 3. Chandrasekharan, N., Kamat, P.V.: ‘Improving the photoelectrochemical performance of nanostructured tio2 films by adsorption of gold nanoparticles’, J. Phys. Chem. B, 2000, 104, pp. 1085110857.
    4. 4)
      • 4. Zaniewski, A.M., Schriver, M., Lee, J.G., et al: ‘Electronic and optical properties of metal-nanoparticle filled graphene sandwiches’, Appl. Phys. Lett., 2013, 102, p. 023108.
    5. 5)
      • 5. Shivaji, S., Madhu, S., Singh, S.: ‘Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria’, Process Biochem., 2011, 46, pp. 18001807.
    6. 6)
      • 6. Peralta-Videa, J.R., Lopez-Moreno, L., Huang, Y., et al: ‘Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis?’, Nanotechnol. Environ. Eng., 2016, 1, p. 4.
    7. 7)
      • 7. Wu, R., Wang, C., Shen, J., et al: ‘A role for biosynthetic CdS quantum dots in extracellular electron transfer of Saccharomyces cerevisiae’, Process Biochem., 2015, 50, pp. 20612065.
    8. 8)
      • 8. Gholami-Shabani, M., Shams-Ghahfarokhi, M., Gholami-Shabani, Z., et al: ‘Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach’, Process Biochem., 2015, 50, pp. 10761085.
    9. 9)
      • 9. Mohammadinejad, R., Karimi, S., Iravani, S., et al: ‘Plant-derived nanostructured: types and applications’, Green Chem., 2016, 18, pp. 2052.
    10. 10)
      • 10. Song, J.Y., Jang, H.K., Kim, B.S.: ‘Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts’, Process Biochem., 2009, 44, pp. 11331138.
    11. 11)
      • 11. Ovais, M., Raza, A., Naz, S., et al: ‘Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics’, Appl. Microbiol. Biotechnol., 2017, 101, (9), pp. 35513565.
    12. 12)
      • 12. Ovais, M., Khalil, A.T., Raza, A., et al: ‘Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics’, Nanomedicine, 2016, 12, (23), pp. 31573177.
    13. 13)
      • 13. Huang, J., Lin, L., Sun, D., et al: ‘Bio-inspired synthesis of metal nanomaterials and applications’, Chem. Soc. Rev., 2015, 44, pp. 63306374.
    14. 14)
      • 14. Shankar, S.S., Rai, A., Ankamwar, B., et al: ‘Biological synthesis of triangular gold nanoprisms’, Nat. Mater., 2004, 3, pp. 482488.
    15. 15)
      • 15. Sharma, M., Pandey, G.: ‘Ethnomedicinal plants for prevention and treatment of tumours’, Int. J. Green Pharm., 2009, 3, pp. 25.
    16. 16)
      • 16. Rosangkima, G., Prasad, S.B.: ‘Anti-tumour activity of some plants from Meghalaya and Mizoram against murine ascites Doltons lymphoma’, Indian J. Exp. Biol., 2004, 42, pp. 981988.
    17. 17)
      • 17. Pandey, G., Madhuri, S.: ‘Therapeutic approach to cancer by vegetables with antioxidant activity’, Int. Res. J. Pharm., 2011, 2, pp. 1013.
    18. 18)
      • 18. Narayanan, K.B., Sakthivel, N.: ‘Coriander leaf mediated biosynthesis of gold nanoparticles’, Mat. Lett., 2008, 62, pp. 45884590.
    19. 19)
      • 19. Dwivedi, A.D., Gopal, K.: ‘Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract’, Colloids Surf A, 2010, 369, pp. 2733.
    20. 20)
      • 20. Shankar, S.S., Rai, A., Ahmad, A., et al: ‘Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth’, J. Coll. Int. Sci., 2004, 275, pp. 496502.
    21. 21)
      • 21. Satish, K.N., Nripen, C., Ravi, S., et al: ‘Green nanotechnology from tea: phytochemicals in tea as building blocks for production of bio-compatible gold nanoparticles’, J. Mat. Chem., 2009, 19, pp. 29122920.
    22. 22)
      • 22. Singh, P., Kim, Y.J., Zhang, D., et al: ‘Biological synthesis of nanoparticles from plants and microorganisms’, Trends Biotechnol., 2016, 34, pp. 588599.
    23. 23)
      • 23. Gould, W.A.: ‘Tomato production, processing and quality evaluation’ (Avi Publishing Company, Westport, Co., 1983), p. 445.
    24. 24)
      • 24. Dhar-Mascareno, M., Carcamo, J.M., Golde, D.W.: ‘Hypoxia-reoxygenation-induced mitochondrial damage and apoptosis in human endothelial cells are inhibited by vitamin C’, Free Radic. Biol. Med., 2005, 38, pp. 13111322.
    25. 25)
      • 25. Calzolai, L., Franchini, F., Gilliland, D., et al: ‘Protein-nanoparticle interaction: identification of the ubiquitin-gold nanoparticle interaction site’, Nano Lett.., 2010, 10, pp. 31013105.
    26. 26)
      • 26. Mock, J.J., Barbic, M., Smith, D.R., et al: ‘Shape effects in plasmon resonance of individual colloidal silver nanoparticles’, J. Chem. Phys., 2002, 116, pp. 67556759.
    27. 27)
      • 27. Khan, S., Rizvi, S.M.D., Avaish, M., et al: ‘A novel process for size controlled biosynthesis of gold nanoparticles using bromelain’, Mater. Lett., 2015, 159, pp. 373376.
    28. 28)
      • 28. George, B., Kaur, C., Khurdiya, D.S., et al: ‘Antioxidants in tomato (Lycopersicon esculentum) as a function of genotype’, Food Chem., 2004, 84, pp. 4551.
    29. 29)
      • 29. Bilton, R., Gerber, M., Grolier, P., et al: ‘The white book on antioxidants in tomatoes and tomato products and their health benefits’. Final report of the Concerted Action Fair CT97-3233 (CMITI Sarl: Avignon Cedex, France, 2001).
    30. 30)
      • 30. Olso, J.A.: ‘The conversion of beta-carotene into vitamin A’, J. Nutr., 1989, 119, pp. 105108.
    31. 31)
      • 31. Van der Logt, E.M., Roelofs, H.M., Nagengast, F.M., et al: ‘Induction of rat hepatic and intestinal UDP-glucuronosyl transferases by naturally occurring dietary anticarcinogens’, Carcinogenesis, 2003, 24, pp. 16511656.
    32. 32)
      • 32. Birt, D.F., Hendrich, S., Wang, W.: ‘Dietary agents in cancer prevention: flavonoids and isoflavonoids’, Pharmacol. Ther., 2001, 90, pp. 157177.
    33. 33)
      • 33. Mayor, S., Pagano, R.E.: ‘Pathways of clathrinindependent endocytosis’, Nat. Rev. Mol. Cell Biol., 2007, 8, pp. 603612.
    34. 34)
      • 34. Stan, R.V.: ‘Structure and function of endothelial caveolae’, Microsc. Res. Tech., 2002, 57, pp. 350364.
    35. 35)
      • 35. Buono, C., Anzinger, J.J., Amar, M., et al: ‘Fluorescent pegylated nanoparticles demonstrate fluid-phase pinocytosis by macrophages in mouse atherosclerotic lesions’, J. Clin. Invest., 2009, 119, pp. 13731381.
    36. 36)
      • 36. Nel, A., Xia, T., Madler, L., et al: ‘Toxic potential of materials at the nanolevel’, Science, 2006, 311, pp. 622627.
    37. 37)
      • 37. Dykman, L.A., Khlebtsov, N.G.: ‘Gold nanoparticles in biology and medicine: recent advances and prospects’, Acta Nat., 2011, 3, pp. 3455.
    38. 38)
      • 38. Kappus, H.: ‘Oxidative stress in chemical toxicity’, Arch. Toxicol., 1987, 60, pp. 144149.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0068
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0068
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address