Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Accuracy of the Maxwell–Wagner and the Bruggeman–Hanai mixture models for single cell dielectric spectroscopy

Dielectric spectroscopy (DS) is a non-invasive, label-free, and promising technique for measuring dielectric properties of biological cells. Recent developments in microfabrication techniques made it possible to perform DS measurements with minute volume of cell suspensions. However, when the cell size approaches the size of the measurement chamber, especially, for single cell measurements, the analytical models [Maxwell–Wagner and Bruggeman–Hanai (BH) mixture models] to extract cell parameters lose their accuracy. Moreover, variations in the cell position relative to the measurement electrodes decrease the accuracy of the analytical solutions. Impedance spectrum of a typical eukaryotic mammalian cell is generated for different geometrical configurations using finite element. The generated data are fitted to the analytical models and extracted cell parameters are compared with the original values. The results show that BH model works more effectively when chamber to cell radius ratio is <3.5 and chamber height to cell radius ratio is <3. Moreover, it is observed that analytical models estimate cell parameters with major errors when the cells are in the vicinity of the electrodes. However, for high-volume fraction simulations, the BH model was able to predict cell parameters better even in the vicinity of the electrodes.

References

    1. 1)
      • 23. Gabriel, S., Lau, R., Gabriel, C.: ‘The dielectric properties of biological tissues: iii. parametric models for the dielectric spectrum of tissues’, Phys. Med. Biol., 1996, 41, (11), p. 2271.
    2. 2)
      • 40. Hanai, T.: ‘Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions’, Kolloid-Zeitschrift, 1960, 171, (1), pp. 2331.
    3. 3)
      • 2. Cheung, K., Gawad, S., Renaud, P.: ‘Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation’, Cytometry Part A, 2005, 65, (2), pp. 124132.
    4. 4)
      • 30. Balaban, N.Q., Merrin, J., Chait, R., et al: ‘Bacterial persistence as a phenotypic switch’, Science, 2004, 305, (5690), pp. 16221625.
    5. 5)
      • 36. Verfürth, R.: ‘A review of a posteriori error estimation and adaptive mesh-refinement techniques’ (John Wiley & Sons Inc, 1996).
    6. 6)
      • 20. Pliquett, U., Frense, D., Schönfeldt, M., et al: ‘Testing miniaturized electrodes for impedance measurements within the beta-dispersion–a practical approach’, J. Electr. Bioimpedance, 2010, 1, (1), pp. 4155.
    7. 7)
      • 4. Asfour, H., Soller, W., Posnack, N., et al: ‘Low frequency impedance spectroscopy of cell monolayers using the four-electrode method’. Journal of Physics: Conf. Series, 2010.
    8. 8)
      • 9. Han, A., Yang, L., Frazier, A.B.: ‘Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy’, Clin. Cancer Res., 2007, 13, (1), pp. 139143.
    9. 9)
      • 31. Coulter, W.: ‘Coulter’. Google Patents, 1956.
    10. 10)
      • 39. Koklu, A.: ‘Fractal gold electrodes for decreasing impedance at the electrolyte/electrode interface’ (Southern Methodist University, 2015).
    11. 11)
      • 22. Schwan, H.P.: ‘Dielectric spectroscopy and electro-rotation of biological cells’, Ferroelectrics, 1988, 86, (1), pp. 205223.
    12. 12)
      • 8. Salmanzadeh, A., Sano, M.B., Gallo-Villanueva, R.C., et al: ‘Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells’, Biomicrofluidics, 2013, 7, (1), p. 011809.
    13. 13)
      • 11. Gascoyne, P.R., Wang, X.-B., Huang, Y., et al: ‘Dielectrophoretic separation of cancer cells from blood’, IEEE Trans. Ind. Appl., 1997, 33, (3), pp. 670678.
    14. 14)
      • 6. Daniels, J.S., Pourmand, N.: ‘Label-free impedance biosensors: opportunities and challenges’, Electroanalysis, 2007, 19, (12), pp. 12391257.
    15. 15)
      • 13. Kyle, A.H., Chan, C.T., Minchinton, A.I.: ‘Characterization of three-dimensional tissue cultures using electrical impedance spectroscopy’, Biophys. J., 1999, 76, (5), pp. 26402648.
    16. 16)
      • 17. Sabuncu, A.C., Asmar, A.J., Stacey, M.W., et al: ‘Differential dielectric responses of chondrocyte and jurkat cells in electromanipulation buffers’, Electrophoresis, 2015, 36, (13), pp. 14991506.
    17. 17)
      • 45. Grover, W.H., Bryan, A.K., Diez-Silva, M., et al: ‘Measuring single-cell density’, Proc. Nat. Acad. Sci., 2011, 108, (27), pp. 1099210996.
    18. 18)
      • 24. Gheorghiu, E.: ‘Measuring living cells using dielectric spectroscopy’, Bioelectrochem. Bioenerg., 1996, 40, (2), pp. 133139.
    19. 19)
      • 14. Caduff, A., Dewarrat, F., Talary, M., et al: ‘Non-invasive glucose monitoring in patients with diabetes: a novel system based on impedance spectroscopy’, Biosens. Bioelectron., 2006, 22, (5), pp. 598604.
    20. 20)
      • 41. Bruggeman, V.D.: ‘Berechnung Verschiedener Physikalischer Konstanten Von Heterogenen Substanzen. I. Dielektrizitätskonstanten Und Leitfähigkeiten Der Mischkörper Aus Isotropen Substanzen’, Ann. Phys., 1935, 416, (7), pp. 636664.
    21. 21)
      • 43. Grund, F., Forsythe, G.E., Malcolm, M.A., et al: ‘Computer methods for mathematical computations’ (Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1977), p. Xi, 259 S’.
    22. 22)
      • 15. Han, A., Frazier, A.B.: ‘Ion channel characterization using single cell impedance spectroscopy’, Lab Chip, 2006, 6, (11), pp. 14121414.
    23. 23)
      • 27. Noll, T., Biselli, M.: ‘Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells’, J. Biotechnol., 1998, 63, (3), pp. 187198.
    24. 24)
      • 18. Sabuncu, A.C., Zhuang, J., Kolb, J.F., et al: ‘Microfluidic impedance spectroscopy as a tool for quantitative biology and biotechnology’, Biomicrofluidics, 2012, 6, (3), p. 034103.
    25. 25)
      • 33. Gawad, S., Schild, L., Renaud, P.: ‘Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing’, Lab Chip, 2001, 1, (1), pp. 7682.
    26. 26)
      • 3. Asami, K., Sekine, K.: ‘Dielectric modelling of cell division for budding and fission yeast’, J. Phys. D: Appl. Phys., 2007, 40, (4), p. 1128.
    27. 27)
      • 37. Koklu, A., Sabuncu, A.C., Beskok, A.: ‘Rough gold electrodes for decreasing impedance at the electrolyte/electrode interface’, Electrochim. Acta, 2016, 205, pp. 215225.
    28. 28)
      • 35. Di Carlo, D.: ‘Inertial microfluidics’, Lab Chip, 2009, 9, (21), pp. 30383046.
    29. 29)
      • 25. Grenier, K., Dubuc, D., Chen, T., et al: ‘Recent advances in microwave-based dielectric spectroscopy at the cellular level for cancer investigations’, IEEE Trans. Microw. Theory Tech., 2013, 61, (5), pp. 20232030.
    30. 30)
      • 34. Asami, K.: ‘Characterization of heterogeneous systems by dielectric spectroscopy’, Prog. Polym. Sci., 2002, 27, (8), pp. 16171659.
    31. 31)
      • 12. Huang, Y., Yang, J., Wang, X.-B., et al: ‘The removal of human breast cancer cells from hematopoietic Cd34+ Stem cells by dielectrophoretic field-flow-fractionation’, J. Hematother. Stem Cell Res., 1999, 8, (5), pp. 481490.
    32. 32)
      • 1. Asami, K., Yonezawa, T.: ‘Dielectric analysis of yeast cell growth’, Biochimica et Biophysica Acta (BBA)-Gen. Subj., 1995, 1245, (1), pp. 99105.
    33. 33)
      • 29. Chang, H.H., Hemberg, M., Barahona, M., et al: ‘Transcriptome-wide noise controls lineage choice in mammalian progenitor cells’, Nature, 2008, 453, (7194), pp. 544547.
    34. 34)
      • 19. Stacey, M.W., Sabuncu, A.C., Beskok, A.: ‘Dielectric characterization of costal cartilage chondrocytes’, Biochimica et Biophysica Acta (BBA)-Gen. Subj., 2014, 1840, (1), pp. 146152.
    35. 35)
      • 42. Bordi, F., Cametti, C., Gili, T.: ‘Reduction of the contribution of electrode polarization effects in the radiowave dielectric measurements of highly conductive biological cell suspensions’, Bioelectrochemistry, 2001, 54, (1), pp. 5361.
    36. 36)
      • 16. Gamby, J., Delapierre, F.-D., Pallandre, A., et al: ‘Dielectric properties of a single nanochannel investigated by high-frequency impedance spectroscopy’, Electrochem. Commun., 2016, 66, pp. 59.
    37. 37)
      • 32. Gawad, S., Cheung, K., Seger, U., et al: ‘Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations’, Lab Chip, 2004, 4, (3), pp. 241251.
    38. 38)
      • 5. Ciambrone, G.J., Liu, V.F., Lin, D.C., et al: ‘Cellular dielectric spectroscopy: a powerful new approach to label-free cellular analysis’, J. Biomol. Screening, 2004, 9, (6), pp. 467480.
    39. 39)
      • 21. Mansoorifar, A., Koklu, A., Sabuncu, A.C., et al: ‘Dielectrophoresis assisted loading and unloading of micro-wells for impedance spectroscopy’, Electrophoresis, 2017, 38, (11), pp. 14661474.
    40. 40)
      • 26. Roman, G.T., Chen, Y., Viberg, P., et al: ‘Single-cell manipulation and analysis using microfluidic devices’, Anal. Bioanal. Chem., 2007, 387, (1), pp. 912.
    41. 41)
      • 10. Park, Y., Kim, H.W., Yun, J., et al: ‘Microelectrical impedance spectroscopy for the differentiation between normal and cancerous human urothelial cell lines: real-time electrical impedance measurement at an optimal frequency’, BioMed Res. Int., 2016, 2016, p. 10.
    42. 42)
      • 38. Koklu, A., Sabuncu, A.C., Beskok, A.: ‘Enhancement of dielectrophoresis using fractal gold nanostructured electrodes’, Electrophoresis, 2017, 38, (11), pp. 14581465.
    43. 43)
      • 7. Fernandez, R.E., Lebiga, E., Koklu, A., et al: ‘Flexible bioimpedance sensor for label-free detection of cell viability and biomass’, IEEE Trans. Nanobiosc., 2015, 14, (7), pp. 700706.
    44. 44)
      • 44. ZAMM: J. Appl. Math. Mech./Z. Angew. Math. Mech., 1979, 59, (2), pp. 141142.
    45. 45)
      • 28. Altschuler, S.J., Wu, L.F.: ‘Cellular heterogeneity: do differences make a difference?’, Cell, 2010, 141, (4), pp. 559563.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0064
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0064
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address