Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Biogenic synthesis, characterisation and antifungal activity of gum kondagogu-silver nano bio composite construct: assessment of its mode of action

The biogenic synthesis of silver nanoparticles was achieved by using gum kondagogu (Cochlospermum gossypium), a natural biopolymer (Gk-AgNPs). Synthesised nanoparticles were characterised by using UV–visible spectroscopy, inductively coupled plasma-atomic emission spectrometer, X-ray diffraction, transmission electron microscope techniques. The silver nano particle size determined was found to be 3.6 ± 2.2 nm. The synthesised Gk-AgNPs showed antifungal activity and exhibited minimum inhibitory concentration and minimal fungicidal concentration values ranging from 3.5 to 6.5 µg mL−1 against Aspergillus parasiticus (NRRL-2999) and Aspergillus flavus (NRRL-6513). Scanning electron microscopy–energy dispersive spectroscopy analysis revealed morphological changes including deformation, shrunken and ruptured mycelium of the fungi. At the biochemical level, the mode of action revealed that there was an elevated level of reactive oxygen species, lipid peroxidation, superoxide dismutase, and catalase enzyme activity. Increased oxidative stress led to increased outer membrane damage, which was confirmed by the entry of N-phenyl naphthylamine to the phospholipid layer of outer membrane and higher levels of K+ release from the fungi treated with Gk-AgNPs. This study explores the possible application of biogenic silver nanoparticles produced from gum kondagogu as potent antifungal agents. The potent antifungal activity of Gk-AgNPs gives scope for its relevance in biomedical application and as a seed dressing material.

References

    1. 1)
      • 41. Manke, A., Wang, L., Rojanasakul, Y.: ‘Mechanisms of nanoparticle-induced oxidative stress and toxicity’, BioMed Res. Int., 2013, 2013, p. 15.
    2. 2)
      • 34. Kim, S., Kim, H.-J.: ‘Anti-bacterial performance of colloidal silver-treated laminate wood flooring’, Int. Biodeter. Biodegr., 2006, 57, (3), pp. 155162.
    3. 3)
      • 47. Patra, P., Mitra S Fau - Debnath, N., Debnath N Fau - Goswami, A., et al: ‘Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study’, Langmuir, 2012, 28, (49), pp. 1696616978.
    4. 4)
      • 48. Kora, A.J., Sashidhar, R.B.: ‘Biogenic silver nanoparticles synthesized with rhamnogalacturonan gum: antibacterial activity, cytotoxicity and its mode of action’, Arabian J. Chem, 2014, http://.doi.org/10.1016/j.arabjc.2014.10.036.
    5. 5)
      • 18. Lawrence, R.A., Burk, R.F.: ‘Glutathione peroxidase activity in selenium-deficient rat liver’, Biochem. Biophys. Res. Commun., 1976, 71, (4), pp. 952958.
    6. 6)
      • 29. Philip, D.: ‘Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles’, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2011, 78, (1), pp. 327331.
    7. 7)
      • 12. Sondi, I., Salopek-Sondi, B.: ‘Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria’, J. Colloid Interface Sci., 2004, 275, (1), pp. 177182.
    8. 8)
      • 14. Tiwari, D.K., Behari, J., Sen, P.: ‘Time and dose-dependent antimicrobial potential of ag nanoparticles synthesized by top down approach’, Curr. Sci., 2008, 95, pp. 647655.
    9. 9)
      • 28. Kumar, B., Smita, K., Cumbal, L., et al: ‘Sonochemical synthesis of silver nanoparticles using starch: a comparison’, Bioinorg. Chem. Appl., 2014, 2014, p. 8.
    10. 10)
      • 9. Sashidhar, R.B., Raju, D., Karuna, R.: ‘Tree gum: gum kondagogu’, in Ramavat, K.G., Merillon, J.-M. (Eds.): ‘Polysaccharides (bioactivity and biotechnology)’ (Springer International, 2015), pp. 185217.
    11. 11)
      • 40. Hwang, I.S., Lee, J., Hwang, J.H., et al: ‘Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals’, FEBS J, 2012, 279, pp. 13271338.
    12. 12)
      • 26. Akrema, , Rahisuddin, : ‘Extracellular synthesis of silver dimer nanoparticles using Callistemon viminalis (Bottlebrush) extract and evaluation of their antibacterial activity’, Spectrosc. Lett., 2016, 49, pp. 268275.
    13. 13)
      • 27. Marambio-Jones, C., Hoek, E.M.V.: ‘A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment’, J. Nanoparticle Res., 2010, 12, (5), pp. 15311551.
    14. 14)
      • 44. Hwang, E.T., Lee, J.H., Chae, Y.J., et al: ‘Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria’, Small, 2008, 4, pp. 746750.
    15. 15)
      • 42. Matsumura, Y., Yoshikata, K., Kunisaki, S.-I., et al: ‘Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate’, Appl. Environ. Microbiol., 2003, 69, pp. 42784281.
    16. 16)
      • 21. Jollow, D., Mitchell, J.R., Zampaglione, N., et al: ‘Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite’, Pharmacology, 1974, 11, pp. 151169.
    17. 17)
      • 32. Kim, K.J., Sung, W.S.., Moon, S.K.., et al: ‘Antifungal effect of silver nanoparticles on dermatophytes’, J. Microbiol. Biotechnol., 2008, 18, pp. 14821484.
    18. 18)
      • 16. Heath, R.L., Packer, L.: ‘Photoperoxidation in isolated chloroplasts’, Arch. Biochem. Biophys., 1968, 125, (1), pp. 189198.
    19. 19)
      • 8. Vinod, V.T.P., Sashidhar, R.B., Suresh, K.I., et al: ‘Morphological, physico-chemical and structural characterization of gum kondagogu (Cochlospermum gossypium): a tree gum from India’, Food Hydrocolloid, 2008, 22, (5), pp. 899915.
    20. 20)
      • 38. Kanmani, P., Lim, S.T.: ‘Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities’, Carbohydr. Polym., 2013, 97, (1879–1344), pp. 421428.
    21. 21)
      • 35. Vazquez-Munoz, R., Avalos-Borja, M., Castro-Longoria, E.: ‘Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles’, PLoS ONE, 2014, 9, (10), (1932–6203) https://doi.org/10.1371/journal.pone.0108876.
    22. 22)
      • 43. Feng, Q., Wu, J., Chen, G., et al: ‘A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus’, J. Biomed. Mater. Res., 2008, 52, pp. 662668.
    23. 23)
      • 10. Kora, A.J., Sashidhar, R.B., Arunachalam, J.: ‘Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application’, Carbohydr. Polymer, 2010, 82, (3), pp. 670679.
    24. 24)
      • 36. Lamsal, K., Kim, S.W., Jung, J.H., et al: ‘Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin’, Mycobiology, 2011, 39, (1), pp. 2632.
    25. 25)
      • 15. Choi, O., Hu, Z.: ‘Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria’, Environ. Sci. Technol., 2008, 42, (12), pp. 45834588.
    26. 26)
      • 45. Buzea, C., Pacheco, I.I., Robbie, K.: ‘Nanomaterials and nanoparticles: sources and toxicity’, Biointerphases, 2007, 2, (4), pp. MR17MR71.
    27. 27)
      • 13. Liu, H., Du, Y., Wang, X., et al: ‘Chitosan kills bacteria through cell membrane damage’, Int. J. Food Microbiol., 2004, 95, (2), pp. 147155.
    28. 28)
      • 22. Lowry, O.H., Rosebrough, N.J., Farr, A.L., et al: ‘Protein measurement with the folin phenol reagent’, J. Biol. Chem., 1951, 193, (0021-9258(Print)), p. 265.
    29. 29)
      • 33. Monteiro, D.R., Gorup, L.F., Silva, S., et al: ‘Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata’, Biofouling, 2011, 27, (7), pp. 711719.
    30. 30)
      • 37. Krishnaraj, C., Harper, S.L., Choe, H.S., et al: ‘Mechanistic aspects of biologically synthesized silver nanoparticles against food- and water-borne microbes’, Bioprocess. Biosyst. Eng., 2015, 38, (10), pp. 19431958.
    31. 31)
      • 17. Jayashree, T., Subramanyam, C.: ‘Antiaflatoxigenic activity of eugenol is due to inhibition of lipid peroxidation’, Lett. Appl. Microbiol., 1999, 28, (3), pp. 179183.
    32. 32)
      • 7. Srikar, S., Giri, D., Pal, D., et al: ‘Green synthesis of silver nanoparticles: a review’, Green Sustain. Chem., 2016, 6, pp. 3456.
    33. 33)
      • 23. Galib, B.M., Mashru, M., Jagtap, C., et al: ‘Therapeutic potentials of metals in ancient India: a review through Charaka Samhita’, J. Ayurveda Integr. Med., 2011, 2, pp. 5563.
    34. 34)
      • 5. Bennett, J.W., Klich, M.: ‘Mycotoxins’, Clin. Microbiol. Rev., 2003, 16, (3), pp. 497516.
    35. 35)
      • 11. Lee, D.G., Kim, H.K., Kim, S.A., et al: ‘Fungicidal effect of Indolicidin and its interaction with Phospholipid membranes’, Biochem. Biophys. Res. Commun., 2003, 305, (2), pp. 305310.
    36. 36)
      • 24. Kar Mahapatra, D., Kumar Bharti, S., Asati, V.: ‘Nature inspired green fabrication technology for silver nanoparticles’, Curr. Nanomed. (Formerly: Recent Patents on Nanomedicine), 2017, 7, (1), pp. 524.
    37. 37)
      • 30. Sarwar, A., Katas, H., Zin, N.M.: ‘Antibacterial effects of chitosan–tripolyphosphate nanoparticles: impact of particle size molecular weight’, J. Nanoparticle Res., 2014, 16, (7), pp. 25172519.
    38. 38)
      • 39. Rastogi, L., Kora, A.J., Sashidhar, R.B.: ‘Antibacterial effects of gum kondagogu reduced/stabilized silver nanoparticles in combination with various antibiotics: a mechanistic approach’, Appl. Nanosci., 2015, 5, (5), pp. 535543.
    39. 39)
      • 3. Paphitou, N.I.: ‘Antimicrobial resistance: action to combat the rising microbial challenges’, Int. J. Antimicrob. Agents, 2013, 42, pp. S25S28.
    40. 40)
      • 20. Claiborne, A.: ‘Catalase activity’, in Greenwald, R.A. (Ed.): ‘CRC handbook of methods for oxygen radical research’ (CRC Press, 1985), pp. 283284.
    41. 41)
      • 1. Jaiswal, S., Duffy, B., Jaiswal, A.K., et al: ‘Enhancement of the antibacterial properties of silver nanoparticles using beta-cyclodextrin as a capping agent’, Int. J. Antimicrob. Agents, 2010, 36, (3), pp. 280283.
    42. 42)
      • 2. Singh, R., Nawale, L.U., Arkile, M., et al: ‘Chemical and biological metal nanoparticles as antimycobacterial agents: a comparative study’, Int. J. Antimicrob. Agents, 2015, 46, (2), pp. 183188.
    43. 43)
      • 25. Natsuki, J., Natsuki, T., Hashimoto, Y.: ‘A review of silver nanoparticles: synthesis methods, properties and applications’, Int. J. Mater. Sci. Appl., 2015, 4, pp. 325332.
    44. 44)
      • 19. Marklund, S., Marklund, G.: ‘Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase’, Eur. J. Biochem., 1974, 47, (3), pp. 469474.
    45. 45)
      • 6. Pfaller, M.A.: ‘Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment’, Am. J. Med., 2012, 125, (1 Suppl.), pp. S313.
    46. 46)
      • 31. Kim, K.-J., Sung, W.S., Suh, B.K., et al: ‘Antifungal activity and mode of action of silver nano-particles on Candida albicans’, BioMetals, 2009, 22, (2), pp. 235242.
    47. 47)
      • 46. Angelova, M.B., Pashova, S.B., Spasova, B.K., et al: ‘Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat’, Mycol. Res., 2005, 109, (2), pp. 150158.
    48. 48)
      • 4. Fisher, M.C., Henk, D.A., Briggs, C.J., et al: ‘Emerging fungal threats to animal, plant and ecosystem health’, Nature, 2012, 484, (7393), pp. 186194.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0043
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address