Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Gold nanosupplement in selective inhibition of methylglyoxal and key enzymes linked to diabetes

The non-enzymatic glycation of macromolecules resulting into advanced glycation end products (AGEs) that constituents lead secondary complication in diabetes. Currently, scientists are focusing on identifying a novel compound that possibly inhibits AGEs without affecting normal cellular function. So far a number of natural and synthetic compounds were reported. This study intended to evaluate the gold nanoparticles (GNPs) on carbohydrate digestive enzymes inhibition and methylglyoxal (MGO) trapping ability. Initially, GNPs were synthesised using Couroupita guianensis and characterised. Further, remarkable inhibition of α-amylase, and glucosidase was found through calorimetric techniques. In addition, the results concluded that GNPs limited the glucose uptake and lead to AGEs inhibition. Also, the mechanistic link behind this study illustrated as MGO inhibition will restrict further glycation of macromolecules, eventually control the complication progression. Collectively, GNPs have significant inhibition of digestive enzymes, MGO and AGEs on dose-dependent manner and metal coated polyphenols have an ideal therapeutic role in controlling diabetes and its complications.

References

    1. 1)
      • 31. Uchida, K., Khor, O.T., Oya, T., et al: ‘Protein modification by a Maillard reaction intermediate methylglyoxal’, FEBS Lett., 1997, 410, (2-3), pp. 313318.
    2. 2)
      • 17. Meda, A., Lamien, C.E., Romito, M., et al: ‘Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity’, Food Chem., 2005, 91, (3), pp. 571577.
    3. 3)
      • 2. Yan, S.F., Ramasamy, R., Schmidt, A.M.: ‘Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications’, Nat. Rev. Endocrinol., 2008, 4, (5), pp. 285293.
    4. 4)
      • 22. Sudha, P., Zinjarde, S.S., Bhargava, S.Y., et al: ‘Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants’, BMC Complement Altern. Med., 2011, 11, (1), p. 5.
    5. 5)
      • 3. Hogan, S., Zhang, L., Li, J., et al: ‘Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase’, Nutr. Metab., 2010, 7, (1), p. 71.
    6. 6)
      • 1. Whiting, D.R., Guariguata, L., Weil, C., et al: ‘IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030’, Diab. Res. Clin. Pract., 2011, 94, (3), pp. 311321.
    7. 7)
      • 28. BarathManiKanth, S., Kalishwaralal, K., Sriram, M., et al: ‘Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice’, J. Nanobiotechnology, 2010, 8, (1), p. 16.
    8. 8)
      • 21. Keser, S., Celik, S., Turkoglu, S., et al: ‘Hydrogen peroxide radical scavenging and total antioxidant activity of hawthorn’, Chem. J., 2012, 2, (1), pp. 912.
    9. 9)
      • 14. Hara, K., Ohara, M., Hayashi, I., et al: ‘The green tea polyphenol (−) -epigallocatechin gallate precipitates salivary proteins including alpha-amylase: biochemical implications for oral health’, Eur. J. Oral Sci., 2012, 120, (2), pp. 132139.
    10. 10)
      • 11. Kasprzak, M.M., Erxleben, A., Ochocki, J.: ‘Properties and applications of flavonoid metal complexes’, RSC Adv., 2015, 5, (57), pp. 4585345877.
    11. 11)
      • 9. Kagithoju, S., Godishala, V., Nanna, R.S.: ‘Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn. F. and their bactericidal activities’, 3 Biotech, 2015, 5, (5), pp. 709714.
    12. 12)
      • 24. Kim, H.Y., Kim, K.: ‘Protein glycation inhibitory and antioxidative activities of some plant extracts in vitro’, J. Agric. Food Chem., 2003, 51, (6), pp. 15861591.
    13. 13)
      • 32. Younus, H., Anwar, S.: ‘Prevention of non-enzymatic glycosylation (glycation): implication in the treatment of diabetic complication’, Int. J. Health Sci., 2016, 10, (2), p. 261.
    14. 14)
      • 20. Gawron-Gzella, A., Dudek-Makuch, M., Matławska, I.: ‘DPPH radical scavenging activity and phenolic compound content in different leaf extracts from selected Blackberry species’, Acta Biol. Cracov. Ser. Bot., 2012, 54, (2), pp. 3238.
    15. 15)
      • 25. Büyükbalci, A., El, S.N.: ‘Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas’, Plant Foods Hum. Nutr., 2008, 63, (1), pp. 2733.
    16. 16)
      • 7. Lee, S.E., Hwang, H.J., Ha, J.S., et al: ‘Screening of medicinal plant extracts for antioxidant activity’, Life Sci., 2003, 73, (2), pp. 167179.
    17. 17)
      • 23. McCue, P., Kwon, Y.I., Shetty, K.: ‘Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean’, Asia Pac. J. Clin. Nutr., 2005, 14, (2), pp. 145152.
    18. 18)
      • 12. Ren, J., Meng, S., Lekka, C.E., et al: ‘Complexation of flavonoids with iron: structure and optical signatures’, J. Phys. Chem. B, 2008, 112, (6), pp. 18451850.
    19. 19)
      • 26. Qais, F.A., Alam, M.M., Naseem, I., et al: ‘Understanding the mechanism of non-enzymatic glycation inhibition by cinnamic acid: an in vitro interaction and molecular modelling study’, RSC Adv., 2016, 6, (70), pp. 6532265337.
    20. 20)
      • 19. Mensor, L.L., Menezes, F.S., Leitão, G.G., et al: ‘Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method’, Phytother. Res., 2001, 15, (2), pp. 127130.
    21. 21)
      • 8. Zhao, C., Sakaguchi, T., Fujita, K., et al: ‘Pomegranate-derived polyphenols reduce reactive oxygen species production via SIRT3-mediated SOD2 activation’, Oxid. Med. Cell Longev., 2016, pp. 19.
    22. 22)
      • 6. Velioglu, Y.S., Mazza, G., Gao, L., et al: ‘Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products’, J. Agric. Food Chem., 1998, 46, (10), pp. 41134117.
    23. 23)
      • 5. Schönfeld, J.V., Weisbrod, B., Müller, M.K.: ‘Silibinin, a plant extract with antioxidant and membrane stabilizing properties, protects exocrine pancreas from cyclosporin A toxicity’, Cell Mol. Life Sci., 1997, 53, (11-12), pp. 917920.
    24. 24)
      • 30. Ahmad, S., Khan, M.S., Akhter, F., et al: ‘Glycoxidation of biological macromolecules: a critical approach to halt the menace of glycation’, Glycobiology, 2014, p.cwu057.
    25. 25)
      • 15. Lv, L., Shao, X., Chen, H., et al: ‘Genistein inhibits advanced glycation end product formation by trapping methylglyoxal’, Chem. Res. Toxicol., 2011, 24, (4), pp. 579586.
    26. 26)
      • 4. Hotta, N., Kakuta, H., Sano, T., et al: ‘Long-term effect of acarbose on glycaemic control in non-insulin-dependent diabetes mellitus: a placebo-controlled double-blind study’, Diabet. Med., 1993, 10, (2), pp. 134138.
    27. 27)
      • 16. McDonald, S., Prenzler, P.D., Antolovich, M., et al: ‘Phenolic content and antioxidant activity of olive extracts’, Food Chem., 2001, 73, (1), pp. 7384.
    28. 28)
      • 18. Sengani, M., Devirajeswari, V.: ‘Identification of potential antioxidant indices by biogenic gold nanoparticles in hyperglycemic Wistar rats’, Environ. Toxicol. Phar., 2017, 50, pp. 1119.
    29. 29)
      • 10. Makarov, V.V., Love, A.J., Sinitsyna, O.V., et al: ‘Green’ nanotechnologies: synthesis of metal nanoparticles using plants’, Acta Naturae, 2014, 6, (1), p. 20.
    30. 30)
      • 27. Martínez, A., Conde, E., Moure, A., et al: ‘Protective effect against oxygen reactive species and skin fibroblast stimulation of Couroupita guianensis leaf extracts’, Nat. Prod. Res., 2012, 26, (4), pp. 314322.
    31. 31)
      • 13. Zondlo, N.J.: ‘Aromatic-proline interactions: electronically tunable CH/π interactions’, Acc. Chem. Res., 2013, 46, (4), p. 1039.
    32. 32)
      • 29. Asgar M., Ali: ‘Anti-diabetic potential of phenolic compounds: A review’, Int. J. Food Sci. Nutr., 2013, 16, (1), pp. 91103.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0032
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0032
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address