Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Evaluation of antifungal effect of iron-oxide nanoparticles against different Candida species

Iron-oxide nanoparticles (IONPs) have been widely favoured due to their biodegradable, low cytotoxic effects and having reactive surface which can be altered with biocompatible coatings. Considering various medical applications of IONPs, the authors were encouraged to study whether IONPs could be effective against fungal infections caused by Candida species. In this study, IONPs were characterised by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and vibrating sample magnetometer. The goal of this study was to evaluate the antifungal activity of IONPs against different Candida spp. compared with fluconazole (FLC). IONPs were spherical with the size of 30–40 nm. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of IONPs ranged from 62.5 to 500 µg/ml and 500 to 1000 μg/ml, respectively. The MIC and MFC of FLC were in range of 16–128 μg/ml and 64–512 μg/ml, respectively. The growth inhibition value indicated that Candida tropicalis, Candida albicans and Candida glabrata spp. were most susceptible to IONPs. The finding showed that the IONPs possessed antifungal potential against pathogenic Candida spp. and could inhibit the growth of all the tested Candida spp. Further studies, both in vitro and in vivo (including susceptibility, toxicity, Probability of kill (PK) and efficacy studies) are needed to determine whether IONPs are suitable for medicinal purposes.

References

    1. 1)
      • 2. Zheng, X., Zhang, G.: ‘Imaging pulmonary infectious diseases in immunocompromised patients’, Radiol. Infectious Diseases, 2014, 1, (1), pp. 3741.
    2. 2)
      • 22. Khatami, M., Nejad, M.S., Salari, S., et al: ‘Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani’, IET Nanobiotechnol., 2016, 10, (4), pp. 237243.
    3. 3)
      • 9. Cordova, G., Attwood, S., Gaikwad, R., et al: ‘Magnetic force microscopy characterization of superparamagnetic iron oxide nanoparticles (SPIONs)’, Nano Biomed. Eng., 2014, 6, (1), pp. 3139.
    4. 4)
      • 33. Tocco, I., Zavan, B., Bassetto, F., et al: ‘Nanotechnology-based therapies for skin wound regeneration’, J. Nanomater., 2012, 2012, pp. 111.
    5. 5)
      • 16. Mishra, N.N., Ali, S., Shukla, P.K.: ‘Arachidonic acid affects biofilm formation and PGE2 level in candida albicans and non-albicans species in presence of subinhibitory concentration of fluconazole and terbinafine’, Braz. J. Infectious Diseases, 2014, 18, (3), pp. 287293.
    6. 6)
      • 34. Naseem, T., Farrukh, M.A.: ‘Antibacterial activity of green synthesis of iron nanoparticles using Lawsonia inermis and Gardenia jasminoides leaves extract’, J. Chem., 2015, 2015, (2015), pp. 17.
    7. 7)
      • 38. Prodan, A.M., Iconaru, S.L., Chifiriuc, C.M., et al: ‘Magnetic properties and biological activity evaluation of iron oxide nanoparticles’, J. Nanomater., 2013, pp. 17.
    8. 8)
      • 14. Rex, J. H., Alexander, B. D., Andes, D., et al: ‘Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard’ (Clinical and Laboratory Standards Institute, Wayne, PA, 2008, 3rd edn. 2008).
    9. 9)
      • 20. Balouiri, M., Sadiki, M., Ibnsouda, S.K.: ‘Methods for in vitro evaluating antimicrobial activity: a review’, J. Pharm. Anal., 2016, 6, (2), pp. 7179.
    10. 10)
      • 19. Cantón, E., Pemán, J., Viudes, A., et al: ‘Minimum fungicidal concentrations of amphotericin B for bloodstream Candida species’, Diagn. Microbiol. Infectious Disease, 2003, 45, (3), pp. 203206.
    11. 11)
      • 26. Kumar, R., Sahoo, G., Chawla-Sarkar, M., et al: ‘Antiviral effect of glycine coated iron oxide nanoparticles iron against H1n1 influenza a virus’, Int. J. Infectious Diseases, 2016, 45, (1), pp. 281282.
    12. 12)
      • 29. Webster, T.J.: ‘Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus’, 2010.
    13. 13)
      • 3. Pappas, P.G., Rex, J.H., Sobel, J.D., et al: ‘Guidelines for treatment of candidiasis’, Clin. Infectious Diseases, 2004, 38, (2), pp. 161189.
    14. 14)
      • 11. Wu, W., Wu, Z., Yu, T., et al: ‘Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications’, Sci. Technol. Adv. Mater., 2016, 16, (2015), pp. 143.
    15. 15)
      • 23. Rudramurthy, G.R., Swamy, M.K., Sinniah, U.R., et al: ‘Nanoparticles: alternatives against drug-resistant pathogenic microbes’, Molecules, 2016, 21, (7), pp. 130.
    16. 16)
      • 5. Salari, S., Khosravi, A., Mousavi, S., et al: ‘Mechanisms of resistance to fluconazole in Candida albicans clinical isolates from Iranian HIV-infected patients with oropharyngeal candidiasis’, J. Mycologie Méd./J. Med. Mycol., 2016, 26, (1), pp. 3541.
    17. 17)
      • 32. Prucek, R., Tuček, J., Kilianová, M., et al: ‘The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles’, Biomaterials, 2011, 32, (21), pp. 47044713.
    18. 18)
      • 41. Dornelas-Ribeiro, M., Pinheiro, E.O., Guerra, C., et al: ‘Cellular characterisation of Candida tropicalis presenting fluconazole-related trailing growth’, Mem. Inst. Oswaldo Cruz, 2012, 107, (1), pp. 3138.
    19. 19)
      • 27. Shukla, S., Arora, V., Jadaun, A., et al: ‘Magnetic removal of entamoeba cysts from water using chitosan oligosaccharide-coated iron oxide nanoparticles’, Int. J. Nanomed., 2015, 10, (1), pp. 49014917.
    20. 20)
      • 42. Behera, S.S., Patra, J.K., Pramanik, K., et al: ‘Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles’, World J. Nano Sci. Eng., 2012, 2, (4), pp. 196200.
    21. 21)
      • 21. Reller, L.B., Weinstein, M., Jorgensen, J.H., et al: ‘Antimicrobial susceptibility testing: a review of general principles and contemporary practices’, Clin. Infectious Diseases, 2009, 49, (11), pp. 17491755.
    22. 22)
      • 13. Ayatollahi Mousavi, S.A., Salari, S., Rezaie, S., et al: ‘Identification of Candida species isolated from oral colonization in Iranian HIV-positive patients by PCR-RFLP’, Jundishapur J. Microbiol., 2013, 5, (1), pp. 336340.
    23. 23)
      • 40. De Groot, P.W., Kraneveld, E.A., Yin, Q.Y., et al: ‘The cell wall of the human pathogen candida Glabrata: differential incorporation of novel adhesin-like wall proteins’, Eukaryot. Cell, 2008, 7, (11), pp. 19511964.
    24. 24)
      • 17. Ayatollahi Mousavi, S.A., Salari, S., Hadizadeh, S.: ‘Evaluation of antifungal effect of silver nanoparticles against Microsporum canis, Trichophyton mentagrophytes and Microsporum gypseum’, Iran. J. Biotechnol., 2015, 13, (4), pp. 3842.
    25. 25)
      • 35. Rafi, M.M., Ahmed, K.S.Z., Nazeer, K.P., et al: ‘Synthesis, characterization and magnetic properties of hematite (Α-Fe2O3) nanoparticles on polysaccharide templates and their antibacterial activity’, Appl. Nanosci., 2015, 5, (4), pp. 515520.
    26. 26)
      • 1. Papon, N., Courdavault, V., Clastre, M., et al: ‘Emerging and emerged pathogenic Candida species: beyond the Candida albicans paradigm’, PLoS Pathog., 2013, 9, (9), p. e1003550.
    27. 27)
      • 6. Salari, S., Bakhshi, T., Sharififar, F., et al: ‘Evaluation of antifungal activity of standardized extract of Salvia rhytidea benth. (lamiaceae) against various candida isolates’, J. Mycologie Méd./J. Med. Mycol., 2016, 26, (4), pp. 323330.
    28. 28)
      • 7. Gontero, D., Lessard-Viger, M., Brouard, D., et al: ‘Smart multifunctional nanoparticles design as sensors and drug delivery systems based on supramolecular chemistry’, Microchem. J., 2017, 140, pp. 316328.
    29. 29)
      • 36. Kim, J.S., Kuk, E., Yu, K.N., et al: ‘Antimicrobial effects of silver nanoparticles’, Nanomed. Nanotechnol. Biol. Med., 2007, 3, (1), pp. 95101.
    30. 30)
      • 39. Azam, A., Ahmed, A.S., Oves, M., et al: ‘Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study’, Int. J. Nanomed., 2012, 7, pp. 60036009.
    31. 31)
      • 8. Dissanayake, N.M., Current, K.M., Obare, S.O.: ‘Mutagenic effects of iron oxide nanoparticles on biological cells’, Int. J. Mol. Sci., 2015, 16, (10), pp. 2348223516.
    32. 32)
      • 15. Fothergill, A.W., Sanders, C., Wiederhold, N.P.: ‘Comparison of MICS of fluconazole and flucytosine when dissolved in dimethyl sulfoxide or water’, J. Clin. Microbiol., 2013, 51, (6), pp. 19551957.
    33. 33)
      • 25. Sunitha, A., Rimal, I., Sweetly, G., et al: ‘Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and Actinomycetes Sp. on human pathogens’, Nano Biomed. Eng., 2013, 5, (1), pp. 3945.
    34. 34)
      • 31. Prodan, A.M., Iconaru, S.L., Chifiriuc, C.M., et al: ‘Iron Oxide Magnetic Nanoparticles: Characterization and Toxicity Evaluation by In Vitro and In Vivo Assays’, J. Nanomater., 2013, pp. 19.
    35. 35)
      • 12. Bakhshi, T., Salari, S., Naseri, A., et al: ‘Molecular identification of Candida species in patients with candidiasis in Birjand, Iran, using polymerase Chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay’, J. Isfahan Med. School, 2016, 33, (359), pp. 19861993.
    36. 36)
      • 30. Taylor, E.N., Webster, T.J.: ‘The use of superparamagnetic nanoparticles for prosthetic biofilm prevention’, Int. J. Nanomed., 2009, 4, p. 145.
    37. 37)
      • 18. Arendrup, M.C., Garcia-Effron, G., Lass-Flörl, C., et al: ‘Echinocandin susceptibility testing of Candida species: comparison of Eucast Edef 7.1, Clsi M27-A3, Etest, disk diffusion, and agar dilution methods with RPMI and isosensitest media’, Antimicrob. Agents Chemother., 2010, 54, (1), pp. 426439.
    38. 38)
      • 4. Kauffman, C.A., Marr, K.A., Thorner, A.R.: ‘Treatment of candidemia and invasive candidiasis in adults’ (UpToDate, Waltham, MA, 2012).
    39. 39)
      • 28. Tran, N., Mir, A., Mallik, D., et al: ‘Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus’, Int. J. Nanomed., 2010, 5, pp. 277283.
    40. 40)
      • 10. Ling, D., Hyeon, T.: ‘Chemical design of biocompatible iron oxide nanoparticles for medical applications’, Small, 2013, 9, (9-10), pp. 14501466.
    41. 41)
      • 24. Ahmad, A., Wei, Y., Syed, F., et al: ‘The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles’, Microb. Pathog., 2016, 102, pp. 133142.
    42. 42)
      • 37. Chifiriuc, C., Grumezescu, V., Grumezescu, A.M., et al: ‘Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity’, Nanoscale Res. Lett., 2012, 7, (1), pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0025
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0025
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address