Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Efficacy of biogenic silver nanoparticles against clinical isolates of fungi causing mycotic keratitis in humans

Mycotic keratitis is mainly responsible for vision loss caused by various fungi. Sometimes, proper treatment of such infection is not possible due to unavailability of effective antifungal agents and development of resistance of such fungi to antimycotic drugs. Hence, it is necessary to search for potential antifungal agents, which can effectively eradicate fungal infection of eyes. Nanoparticles-based antifungal drugs overcome this problem by increasing permeability and properties of drug molecules. In the present study, silver nanoparticles were synthesised by using Helminthosporium sp. and Chaetomium sp. following sequential reduction technique. The synthesised silver nanoparticles were detected primarily by UV-visible spectrophotometer showing absorption spectra at 424 and 433 nm, respectively. Nanoparticles tracking analysis confirmed the mean particle size of silver nanoparticles as 45 and 55 nm. The synthesised AgNPs showed significant antifungal activity against fungi causing mycotic keratitis, when used alone and in combination with ketoconazole and amphotericin B in the range of 30–70 microgram per millilitre of minimum inhibitory concentration. Thus, the synthesised AgNPs can be used to enhance the activities of ketoconazole and amphotericin B.

References

    1. 1)
      • 25. Rathna, G., Elavarasi, A., Peninal, S., et al: ‘Extracellular biosynthesis of silver nanoparticles by endophytic fungus Aspergillus terreus and its antidermatophytic activity’, Int. J. Pharm. Biol. Arch., 2013, 4, pp. 481487.
    2. 2)
      • 44. Vahabi, K., Ali Mansoori, G., Karimi, S.: ‘Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (A Route for Large-Scale Production of AgNPs)’, Insci. J., 2011, 1, (1), pp. 6579.
    3. 3)
      • 38. Saeb, A., Alshammari, A., Brahim, H., et al: ‘Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria’, Sci. World J., 2014, 2014, pp. 19.
    4. 4)
      • 49. Kim, S.W., Jung, J.H., Lamsa, K., et al: ‘Antifungal effects of silver nanoparticles (Ag NPs) against various plant pathogenic fung’, Mycobiol., 2012, 40, pp. 415427.
    5. 5)
      • 41. Singh, M., Kalaivani, R., Manikandan, S., et al: ‘Facile green synthesis of variable metallic gold nanoparticles using Padina gymnospora, a brown marine macroalga’, Appl. Nanosci., 2013, 3, pp. 145151.
    6. 6)
      • 3. Toshida, H., Kogure, N., Inoue, N., et al: ‘Trends in microbial keratitis in Japan’, Eye Contact Lens., 2007, 33, pp. 7073.
    7. 7)
      • 5. Ho, J.W., Fernandez, M.M., Rebong, R.A., et al: ‘Microbiological profiles of fungal keratitis: a 10-year study at a tertiary referral center’, J. Ophthalmic Inflamm. Infect., 2016, 6, (5), pp. 14.
    8. 8)
      • 15. Xu, Q., Kambhampati, S.P., Kannan, R.M.: ‘Nanotechnology approaches for ocular drug delivery’, Middle East Afr. J. Ophthalmol., 2013, 20, (1), pp. 2637.
    9. 9)
      • 33. Devi, L.S., Joshi, S.R.: ‘Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi’, J. Microsc. Ultrastruct., 2015, 3, (1), pp. 2937.
    10. 10)
      • 46. Lima, R., Feitosa, L.O., Ballottin, D., et al: ‘Cytotoxicity and genotoxicity of biogenic silver nanoparticles’, J. Phys., 2013, 429, p. 012020.
    11. 11)
      • 17. Leticia, H., Schilrreff, P., Perez, A., et al: ‘The intervention of nanotechnology against epithelial fungal diseases’, J. Biomater. Tissue Eng., 2013, 3, pp. 19.
    12. 12)
      • 29. Mariana, P., Gustavo, M., Mario, J., et al: ‘Studies on endophytic fungi of ayurvedic medicinal plant Gymnema sylvestre’, Int. J. Curr. Sci., 2013, 7, pp. 118127.
    13. 13)
      • 28. Huang, W., Cai, Z., Hyde, D., et al: ‘Endophytic fungi from Nerium oleander L. (Apocynaceae): main constituents and antioxidant activity’, World J. Microbiol. Biotechnol., 2007, 23, pp. 12531263.
    14. 14)
      • 48. Hamouda, T., Myc, A., Donovan, B., et al: ‘A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial against bacteria, enveloped viruses and fungi’, Microbial. Res., 2000, 156, p. 1.
    15. 15)
      • 22. Rai, M., Yadav, A., Bridge, P., et al: ‘Myconanotechnology: A new emerging science’, in Rai, M., Bridge, P.D., (Ed.): ‘Applied mycology’ (CAB International, USA), pp. 258267.
    16. 16)
      • 32. Abdel-Hafez, S.I.I., Nafady, N.A., Abdel-Rahim, I.R., et al: ‘Biogenesis and optimisation of silver nanoparticles by the endophytic fungus Cladosporium sphaerospermum’, Int. J. Nanomat. Chem., 2016, 2, (1), pp. 1119.
    17. 17)
      • 36. Netala, V.R., Bobbu, P., Ghosh, S.B., et al: ‘Endophytic fungal assisted synthesis of silver nanoparticles, characterization, and antimicrobial activity’, Asian J. Pharm. Clin. Res., 2015, 8, (3), pp. 113116.
    18. 18)
      • 12. Salem, H.F., Ahmed, S.M., Omar, M.M.: ‘Liposomal flucytosine capped with gold nanoparticle formulations for improved ocular delivery’, Drug Des. Dev. Ther., 2016, 10, pp. 277295.
    19. 19)
      • 43. Singh, D., Rathod, V., Ninganagouda, S., et al: ‘Optimization and characterization of silver nanoparticles by endophytic fungi Penicillium sp. Isolated from Curcuma longa and application studies against MDR E. coli and S. aureus’, Bioinorg. Chem. Appl., 2014, 2014, pp. 17.
    20. 20)
      • 37. Gaikwad, S., Birla, S., Ingle, A., et al: ‘Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles’, J. Braz. Chem. Soc., 2013, 24, (12), pp. 19741982.
    21. 21)
      • 40. Tashi, T., Gupta, N.V., Mbuya, V.B.: ‘Silver nanoparticles: Synthesis, mechanism of antimicrobial action, characterization, medical applications, and toxicity effects’, J. Chem. Pharm. Res., 2016, 8, (2), pp. 526537.
    22. 22)
      • 35. Birla, S., Tiwari, V., Gade, A., et al: ‘Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus’, Lett. Appl. Microbiol., 2009, 48, (2), pp. 173179.
    23. 23)
      • 8. Sengupta, J., Saha, S., Khetan, A., et al: ‘Candida fermentati: a rare yeast involved in fungal keratitis’, Eye Contact Lens., 2012, 39, (4), pp. e15e18.
    24. 24)
      • 9. Shigeyasu, C., Yamada, M., Nakamura, N., et al: ‘Keratomycosis caused by Aspergillus viridinutans: an Aspergillus fumigates resembling mold presenting distinct clinical and antifungal susceptibility patterns’, Med. Mycol., 2012, 50, pp. 525528.
    25. 25)
      • 6. Thomas, P.: ‘Tropical opthalmomycoses’, in Seal, D., Pleyer, U. (Ed.): ‘Ocular infection’ (Informa Healthcare, New York, 2007, 2nd edn.), pp. 271305.
    26. 26)
      • 21. Khodashenas, B., Ghorbani, H.R.: ‘Synthesis of silver nanoparticles with different shapes’, Arabian J. Chem., 2015, doi:10.1016/j.arabjc.2014.12.014.
    27. 27)
      • 23. Ingale, A., Chaudhari, A.N.: ‘A biogenic synthesis of nanoparticles and potential applications: An eco-friendly approach’, J. Nanomed. Nanotechnol., 2013, 4, pp. 17.
    28. 28)
      • 24. Siddiqi, K.S., Husen, A.: ‘Fabrication of metal nanoparticles from fungi and metal salts: scope and application’, Nanoscale Res. Lett., 2016, 11, (98), pp. 115.
    29. 29)
      • 10. Zhong, J., Huang, W., Deng, Q., et al: ‘Inhibition of TREM- 1 and Dectin-1 alleviates the severity of fungal keratitis by modulating innate immune responses’, PLoS ONE, 2016, 11, (3), p. e0150114.
    30. 30)
      • 45. Baker, S., Mohan Kumar, K., Santosh, P., et al: ‘Extracellular synthesis of silver nanoparticles by novel Pseudomonas veroniiAS41G inhabiting Annona squamosal L. and their bactericidal activity’, Spectrochim. Acta Mol. Biomol. Spectrosc., 2015, 136, pp. 14341440.
    31. 31)
      • 34. Ingle, A., Gade, A., Pierrat, S., et al: ‘Mycosynthesis of silver nanoparticles using fungus Fusarium acuminatum and its activity against some human pathogenic bacteria’, Curr. Nanosci., 2008, 4, pp. 141144.
    32. 32)
      • 11. Pauk-Gulić, M., Gabrić, N., Biščević, A., et al: ‘Successful treatment of post keratoplasty fungal keratitis with topical and intrastromal voriconazole’, J. Clin. Expt. Ophthalmol., 2015, 6, (1), p. 1000393.
    33. 33)
      • 2. Thomas, P.A., Kaliamurthy, J.: ‘Mycotic keratitis: epidemiology, diagnosis and management’, Clin. Microbiol. Inf., 2013, 19, (3), pp. 210220.
    34. 34)
      • 16. Zazo, H., Colino, C.I., Lanao, J.M.: ‘Current applications of nanoparticles in infectious diseases’, J. Cont. Rel., 2016, 224, pp. 86102.
    35. 35)
      • 1. Thomas, P.A.: ‘Fungal infections of the cornea’, Eye, 2003, 17, pp. 852862.
    36. 36)
      • 14. Gaudana, R., Ananthula, K., Parenky, A., et al: ‘Ocular drug delivery’, J. AAPS., 2010, 12, pp. 348360.
    37. 37)
      • 4. Shi, W., Wang, T., Xie, L.: ‘Risk factors, clinical features, and outcomes of recurrent fungal keratitis after corneal transplantation’, Ophthalmol., 2010, 17, pp. 890896.
    38. 38)
      • 47. Yadav, A., Kon, K., Kratosova, G., et al: ‘Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research’, Biotechnol. Lett., 2015, 37, pp. 20992120.
    39. 39)
      • 18. Quingguo, X., Kambhampati, S., Kannan, R.: ‘Nanotechnology approaches for ocular drug delivery’, Middle East Afr. J. Opthalmol., 2014, 20, pp. 2637.
    40. 40)
      • 27. Devi, L.S., Joshi, S.R.: ‘Evaluation of the antimicrobial potency of silver nanoparticles biosynthesized by using an endophytic fungus, Cryptosporiopsis ericae PS4’, J. Microbiol., 2014, 52, (8), pp. 667674.
    41. 41)
      • 13. Ludwig, A.: ‘The use of mucoadhesive polymers in ocular drug delivery’, Adv. Drug Deliv. Rev., 2005, 57, pp. 15951639.
    42. 42)
      • 31. Sunkar, S., Nachiyar, C.V.: ‘Endophytic fungi- mediated silver nanoparticles as effective antibacterial agent’, Int. J. Pharm. Pharm. Sci., 2013, 5, (2), pp. 95100.
    43. 43)
      • 42. Sahoo, S., Chakraborti, C.K., Behera, P.K., et al: ‘FTIR and raman spectroscopic investigations of a norfloxacin/carbopol934 polymeric suspension’, J. Young Pharm., 2012, 4, pp. 138145.
    44. 44)
      • 7. Theoulakis, P., Goldblum, D., Zimmerli, S., et al: ‘Keratitis resulting from Thielavia sub thermophile Mouchacca’, Cornea, 2009, 28, pp. 10671069.
    45. 45)
      • 26. Balakumaran, M.D., Ramachandran, R., Kalaichelvan, P.T.: ‘Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities’, Microbiol. Res., 2015, 178, pp. 917.
    46. 46)
      • 20. Tran, Q., Nguyen, V., Le, A.: ‘Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives’, Adv. Nat. Sci. Nanosci. Nanotechnol., 2013, 4, pp. 120.
    47. 47)
      • 39. Tak, Y.K., Pal, S., Naoghare, P.K., et al: ‘Shape-dependent skin penetration of silver nanoparticles: does it really matter?’, Sci. Rep., 2015, 5, p. 16908.
    48. 48)
      • 30. Sadananda, S., Nirupama, R., Chaithra, K., et al: ‘Antimicrobial and antioxidant activities of endophytes from Tabebuia argentea and identification of anticancer agent (lapachol)’, J. Med. Plants Res., 2011, 5, (16), pp. 36433652.
    49. 49)
      • 19. Sharaf, G., Sibel, C., Heckler, L., et al: ‘Nanotechnology based approaches for ophthalmology applications: Therapeutic and diagnostic strategies’, Asia-Pac. J. Ophthalmol., 2014, 3, pp. 172180.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2017.0003
Loading

Related content

content/journals/10.1049/iet-nbt.2017.0003
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address