http://iet.metastore.ingenta.com
1887

In vitro germination and biochemical profiling of citrus reticulata in response to green synthesised zinc and copper nanoparticles

In vitro germination and biochemical profiling of citrus reticulata in response to green synthesised zinc and copper nanoparticles

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Green synthesis of nanoparticles by using plants is an emerging class of nanobiotechnology. It revolutionizes all the fields of nanobiotechnology by synthesizing chemical-free nanoparticles for various purposes. In the present study, zinc and copper nanoparticles were synthesized by using the white leaves of Allium cepa and further characterized through Zeta analyzer and Scanning electron microscopy. Zeta analyzer elucidated that zinc nanoparticles ranged from 8-32 nm while copper nanoparticles ranged from 15-30 nm. Scanning electron microscopy clarified that zinc nanoparticles were irregular while copper nanoparticles were spherical in shape. The effects of green synthesized nanoparticles were evaluated on the germination frequency and biochemical parameters of plant tissues. The nucellus tissues were inoculated on Murashige and Skoog (MS) medium augmented with 30 µg/ml suspension of zinc and copper nanoparticles. Green synthesized nanoparticles enhanced the in vitro germination parameters because of their low toxicity and high efficacy. Significant results were obtained for germination parameters in response to the applications of zinc nanoparticles as compared to copper nanoparticles. These nanoparticles could also induce stress in plantlets by manipulating the endogenous mechanism as a result various defence compounds are produced which have potential in treating various human ailments. Copper nanoparticles showed higher toxicity as compared to zinc nanoparticles and triggered the production of antioxidative enzymes and non- enzymatic compounds.

References

    1. 1)
      • D. Lin , B. Xing .
        1. Lin, D., Xing, B.: ‘Phytotoxicity of nanoparticles: inhibition of seed germination and root growth’, Environ. Pollut., 2007, 150, pp. 243250.
        . Environ. Pollut. , 243 - 250
    2. 2)
      • T. Sun , Y.S. Zhang , B. Pang .
        2. Sun, T., Zhang, Y.S., Pang, B., et al: ‘Engineered nanoparticles for drug delivery in cancer therapy’, Angew. Chem. Int. Ed., 2014, 53, pp. 1232012364.
        . Angew. Chem. Int. Ed. , 12320 - 12364
    3. 3)
      • A.K. Mittal , Y. Chisti , U.C. Banerjee .
        3. Mittal, A.K., Chisti, Y., Banerjee, U.C.: ‘Synthesis of metallic nanoparticles using plant extracts’, Biotechnol. Adv., 2013, 31, pp. 346356.
        . Biotechnol. Adv. , 346 - 356
    4. 4)
      • A. Tao , P. Sinsermsuksakul , P. Yang .
        4. Tao, A., Sinsermsuksakul, P., Yang, P.: ‘Polyhedral silver nanocrystals with distinct scattering signatures’, Angew. Chem. Int. Ed., 2006, 45, pp. 45974601.
        . Angew. Chem. Int. Ed. , 4597 - 4601
    5. 5)
      • A. Singh , D. Jain , M. Upadhyay .
        5. Singh, A., Jain, D., Upadhyay, M., et al: ‘Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities’, Dig. J. Nanomat. Biosci., 2010, 5, pp. 483489.
        . Dig. J. Nanomat. Biosci. , 483 - 489
    6. 6)
      • Y. Park , H.J. Noh , L. Han .
        6. Park, Y., Noh, H.J., Han, L., et al: ‘Artemisia capillaris extracts as a green factory for the synthesis of silver nanoparticles with antibacterial activities’, J. Nanosci. Nanotechnol., 2012, 12, pp. 70877095.
        . J. Nanosci. Nanotechnol. , 7087 - 7095
    7. 7)
      • S. Kapoor , D. Lawless , P. Kennepohl .
        7. Kapoor, S., Lawless, D., Kennepohl, P., et al: ‘Reduction and aggregation of silver ions in aqueous gelatin solutions’, Langmuir, 1994, 10, pp. 30183022.
        . Langmuir , 3018 - 3022
    8. 8)
      • M. Hussain , N.I. Raja , M. Iqbal .
        8. Hussain, M., Raja, N.I., Iqbal, M., et al: ‘Plantlets regeneration via somatic embryogenesis from the nucellus tissues of Kinnow Mandarin (Citrus reticulata L.)’, Am. J. Plant Sci., 2016, 7, pp. 798805.
        . Am. J. Plant Sci. , 798 - 805
    9. 9)
      • Z.Y. Pan , S.P. Zhu , R. Guan .
        9. Pan, Z.Y., Zhu, S.P., Guan, R., et al: ‘Identification of 2,4-D responsive proteins in embryogenic callus of Valencia sweet orange (Citrus sinensis Osbeck) following osmotic stress’, Plant Cell Tissue Organ Cult., 2010, 103, pp. 145153.
        . Plant Cell Tissue Organ Cult. , 145 - 153
    10. 10)
      • T. Ugandhar , M. Venkateshwarlu , D. Sammailah .
        10. Ugandhar, T., Venkateshwarlu, M., Sammailah, D., et al: ‘Rapid In vitro micro propagation of chick pea (Cicer arietinum L.) from shoot tip and cotyledonary node explants’, J. Biotechnol. Biomater., 2012, 2, p. 148.
        . J. Biotechnol. Biomater. , 148
    11. 11)
      • J.N. Oggema , M.G. Kinyua , J.P. Ouma .
        11. Oggema, J.N., Kinyua, M.G., Ouma, J.P., et al: ‘Agronomic performance of locally adapted sweet potato (Ipomoea batatas (L.) Lam.) cultivars derived from tissue culture regenerated plants’, African. J. Biotechnol., 2007, 6, pp. 14181425.
        . African. J. Biotechnol. , 1418 - 1425
    12. 12)
      • V. Kumar , S.K. Yadav .
        12. Kumar, V., Yadav, S.K.: ‘Plant-mediated synthesis of silver and gold nanoparticles and their applications’, J. Chem. Technol. Biotechnol., 2009, 84, pp. 151157.
        . J. Chem. Technol. Biotechnol. , 151 - 157
    13. 13)
      • M. Valko , D. Leibfritz , J. Moncol .
        13. Valko, M., Leibfritz, D., Moncol, J., et al: ‘Free radicals and antioxidants in normal physiological functions and human disease’, Int. J. Biochem. Cell Biol., 2006, 7, pp. 4578.
        . Int. J. Biochem. Cell Biol. , 45 - 78
    14. 14)
      • X. Ma , J. Geiser-Lee , Y. Deng .
        14. Ma, X., Geiser-Lee, J., Deng, Y., et al: ‘Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation’, Sci. Total Environ., 2010, 408, pp. 30533061.
        . Sci. Total Environ. , 3053 - 3061
    15. 15)
      • C. Larue , J. Laurette , N. Herlin-Boime .
        15. Larue, C., Laurette, J., Herlin-Boime, N., et al: ‘Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase’, Sci. Total Environ., 2012, 431, pp. 197208.
        . Sci. Total Environ. , 197 - 208
    16. 16)
      • M. Zaka , B.H. Abbasi , L. Rahman .
        16. Zaka, M., Abbasi, B.H., Rahman, L., et al: ‘Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa’, IET Nanobiotechnol., 2016, 10, (3), pp. 17.
        . IET Nanobiotechnol. , 3 , 1 - 7
    17. 17)
      • V. Shah , I. Belozerova .
        17. Shah, V., Belozerova, I.: ‘Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds’, Water Air Soil Pollut., 2009, 197, pp. 143148.
        . Water Air Soil Pollut. , 143 - 148
    18. 18)
      • J.S. Kim , E. Kuk , K.N. Yu .
        18. Kim, J.S., Kuk, E., Yu, K.N.: ‘Antimicrobial effects of silver nanoparticles’, Nanomed., 2007, 3, pp. 95101.
        . Nanomed. , 95 - 101
    19. 19)
      • M. Ali , B. Kim , K.D. Belfield .
        19. Ali, M., Kim, B., Belfield, K.D., et al: ‘Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract – a comprehensive study’, Mater. Sci. Eng., 2016, 58, pp. 359365.
        . Mater. Sci. Eng. , 359 - 365
    20. 20)
      • N. Savithramma , S. Ankanna , G. Bhumi .
        20. Savithramma, N., Ankanna, S., Bhumi, G.: ‘Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata – an endemic and endangered medicinal tree taxon’, Nano Vis., 2012, 2, pp. 6168.
        . Nano Vis. , 61 - 68
    21. 21)
      • M. Iqbal , S. Asif , N. Ilyas .
        21. Iqbal, M., Asif, S., Ilyas, N., et al: ‘Effect of plant derived smoke on germination and post germination expression of wheat (Triticum aestivum L.)’, Am. J. Plant Sci., 2016, 7, pp. 806813.
        . Am. J. Plant Sci. , 806 - 813
    22. 22)
      • A.A. Abdul-Baki , J.D. Anderson .
        22. Abdul-Baki, A.A., Anderson, J.D.: ‘Vigor determination in soybean and seed multiple criteria’, Crop Sci., 1973, 13, pp. 630633.
        . Crop Sci. , 630 - 633
    23. 23)
      • J. Ushahra , C.P. Malik .
        23. Ushahra, J., Malik, C.P.: ‘Putrescine and ascorbic acid mediated enhancement in growth and antioxidant status of Eruca sativa varieties’, CIB. Tech. J. Biotechnol., 2013, 2, pp. 5364.
        . CIB. Tech. J. Biotechnol. , 53 - 64
    24. 24)
      • B.H. Abbasi , M.A. Khan , T. Mahmood .
        24. Abbasi, B.H., Khan, M.A., Mahmood, T., et al: ‘Shoot regeneration and free radical scavenging activity in Silybum marianum L.’, Plant Cell Tissue Organ Cult., 2010, 101, pp. 371376.
        . Plant Cell Tissue Organ Cult. , 371 - 376
    25. 25)
      • Y.S. Velioglu , G. Mazza , L. Gao .
        25. Velioglu, Y.S., Mazza, G., Gao, L., et al: ‘Antioxidant activity and total phenolics in selected fruits, vegetables and grains products’, J. Agri. Food Chem., 1998, 46, pp. 41134117.
        . J. Agri. Food Chem. , 4113 - 4117
    26. 26)
      • C. Chang , M. Yang , H. Wen .
        26. Chang, C., Yang, M., Wen, H., et al: ‘Estimation of total flavonoid content in propolis by two complimentary colorimetric method’, J. Food Drug Anal., 2002, 10, pp. 178182.
        . J. Food Drug Anal. , 178 - 182
    27. 27)
      • O.H. Lowry , N.J. Rosebrough , A.I. Farr .
        27. Lowry, O.H., Rosebrough, N.J., Farr, A.I., et al: ‘Protein measurement with the folin phenol reagent’, J. Biol. Biochem., 1951, 193, pp. 265275.
        . J. Biol. Biochem. , 265 - 275
    28. 28)
      • N. Ullah , I.U. Haq , N. Safdar .
        28. Ullah, N., Haq, I.U., Safdar, N.: ‘Physiological and biochemical mechanisms of allelopathy mediated by the allelochemical extracts of Phytolacca latbenia (Moq.) H. Walter’, Toxicol. Ind. Health, 2015, 31, pp. 931937.
        . Toxicol. Ind. Health , 931 - 937
    29. 29)
      • P. Rauwel , S. Küünal , S. Ferdov .
        29. Rauwel, P., Küünal, S., Ferdov, S., et al: ‘A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM’, Adv. Mater Sci. Eng., 2015, pp. 19.
        . Adv. Mater Sci. Eng. , 1 - 9
    30. 30)
      • F. Yasmeen , N.I. Raja , A. Razzaq .
        30. Yasmeen, F., Raja, N.I., Razzaq, A., et al: ‘Proteomics and physiological analyses of wheat seeds exposed to copper and iron nanoparticles’, Biochim. Biophys. Acta, 2016, 1865, pp. 2842.
        . Biochim. Biophys. Acta , 28 - 42
    31. 31)
      • Y.S. El-Temsah , E.J. Joner .
        31. El-Temsah, Y.S., Joner, E.J.: ‘Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil’, Environ. Toxicol., 2012, 27, pp. 4249.
        . Environ. Toxicol. , 42 - 49
    32. 32)
      • W. Lee , Y. An , H. Yoon .
        32. Lee, W., An, Y., Yoon, H.: ‘Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolusradiatus) and wheat (Triticum aestivum): plant uptake for water insoluble nanoparticles’, Environ. Toxicol. Chem., 2008, 27, pp. 19151921.
        . Environ. Toxicol. Chem. , 1915 - 1921
    33. 33)
      • O. Munzuroglu , H. Geckil .
        33. Munzuroglu, O., Geckil, H.: ‘Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in triticum aestivum and cucumis sativus’, Arch. Environ. Contamin. Toxicol., 2002, 43, pp. 203213.
        . Arch. Environ. Contamin. Toxicol. , 203 - 213
    34. 34)
      • H.A. Kordan .
        34. Kordan, H.A.: ‘Seed viability and germination: a multi-purpose experimental system’, J. Biol. Educ., 1992, 26, pp. 247251.
        . J. Biol. Educ. , 247 - 251
    35. 35)
      • M.R. Murata , P.S. Hammes , G.E. Zharare .
        35. Murata, M.R., Hammes, P.S., Zharare, G.E.: ‘Effect of solution pH and calcium concentration on germination and early growth of groundnut’, J. Plant Nutr., 2003, 26, pp. 12471262.
        . J. Plant Nutr. , 1247 - 1262
    36. 36)
      • H. Zafar , A. Ali , J.S. Ali .
        36. Zafar, H., Ali, A., Ali, J.S., et al: ‘Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response’, Front. Plant Sci., 2016, 7, pp. 18.
        . Front. Plant Sci. , 1 - 8
    37. 37)
      • M.S. Khan , M. Zaka , B.H. Abbasi .
        37. Khan, M.S., Zaka, M., Abbasi, B.H., et al: ‘Seed germination and biochemical profile of Silybum marianum exposed to monometallic and bimetallic alloy nanoparticles’, IET Nanobiotechnol., 2016, 10, (6), pp. 18.
        . IET Nanobiotechnol. , 6 , 1 - 8
    38. 38)
      • M.R. Hemm , S.D. Rider , J. Ogas .
        38. Hemm, M.R., Rider, S.D., Ogas, J., et al: ‘Light induces phenylpropanoid metabolism in Arabidopsis roots’, Plant J., 2004, 38, pp. 765778.
        . Plant J. , 765 - 778
    39. 39)
      • A. Parsaeimehr , E. Sargsyan , K. Javidnia .
        39. Parsaeimehr, A., Sargsyan, E., Javidnia, K.: ‘A comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra’, Molecules, 2010, 15, pp. 16681678.
        . Molecules , 1668 - 1678
    40. 40)
      • P. Costa , S. Gonçalves , P. Valentao .
        40. Costa, P., Gonçalves, S., Valentao, P., et al: ‘Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity’, Food Chem., 2012, 135, pp. 12531260.
        . Food Chem. , 1253 - 1260
    41. 41)
      • U. Tariq , M. Ali , B.H. Abbasi .
        41. Tariq, U., Ali, M., Abbasi, B.H.: ‘Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L’, J. Photochem. Photobiol., 2014, 130, pp. 264271.
        . J. Photochem. Photobiol. , 264 - 271
    42. 42)
      • A.A. Meratan , S.M. Gaffari , V. Nikram .
        42. Meratan, A.A., Gaffari, S.M., Nikram, V.: ‘In vitro organogenesis and antioxidant enzymes activity in Acanthophyllum sordidum’, Biol. Plantarum, 2009, 53, pp. 510.
        . Biol. Plantarum , 5 - 10
    43. 43)
      • S. Priyadarshini , B. Deepesh , M.G.H. Zaidi .
        43. Priyadarshini, S., Deepesh, B., Zaidi, M.G.H., et al: ‘Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea’, Appl. Biochem. Biotechnol., 2012, 167, pp. 22252233.
        . Appl. Biochem. Biotechnol. , 2225 - 2233
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0256
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0256
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address