Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free In vitro germination and biochemical profiling of citrus reticulata in response to green synthesised zinc and copper nanoparticles

Green synthesis of nanoparticles by using plants is an emerging class of nanobiotechnology. It revolutionizes all the fields of nanobiotechnology by synthesizing chemical-free nanoparticles for various purposes. In the present study, zinc and copper nanoparticles were synthesized by using the white leaves of Allium cepa and further characterized through Zeta analyzer and Scanning electron microscopy. Zeta analyzer elucidated that zinc nanoparticles ranged from 8-32 nm while copper nanoparticles ranged from 15-30 nm. Scanning electron microscopy clarified that zinc nanoparticles were irregular while copper nanoparticles were spherical in shape. The effects of green synthesized nanoparticles were evaluated on the germination frequency and biochemical parameters of plant tissues. The nucellus tissues were inoculated on Murashige and Skoog (MS) medium augmented with 30 µg/ml suspension of zinc and copper nanoparticles. Green synthesized nanoparticles enhanced the in vitro germination parameters because of their low toxicity and high efficacy. Significant results were obtained for germination parameters in response to the applications of zinc nanoparticles as compared to copper nanoparticles. These nanoparticles could also induce stress in plantlets by manipulating the endogenous mechanism as a result various defence compounds are produced which have potential in treating various human ailments. Copper nanoparticles showed higher toxicity as compared to zinc nanoparticles and triggered the production of antioxidative enzymes and non- enzymatic compounds.

References

    1. 1)
      • 25. Velioglu, Y.S., Mazza, G., Gao, L., et al: ‘Antioxidant activity and total phenolics in selected fruits, vegetables and grains products’, J. Agri. Food Chem., 1998, 46, pp. 41134117.
    2. 2)
      • 30. Yasmeen, F., Raja, N.I., Razzaq, A., et al: ‘Proteomics and physiological analyses of wheat seeds exposed to copper and iron nanoparticles’, Biochim. Biophys. Acta, 2016, 1865, pp. 2842.
    3. 3)
      • 16. Zaka, M., Abbasi, B.H., Rahman, L., et al: ‘Synthesis and characterisation of metal nanoparticles and their effects on seed germination and seedling growth in commercially important Eruca sativa’, IET Nanobiotechnol., 2016, 10, (3), pp. 17.
    4. 4)
      • 9. Pan, Z.Y., Zhu, S.P., Guan, R., et al: ‘Identification of 2,4-D responsive proteins in embryogenic callus of Valencia sweet orange (Citrus sinensis Osbeck) following osmotic stress’, Plant Cell Tissue Organ Cult., 2010, 103, pp. 145153.
    5. 5)
      • 13. Valko, M., Leibfritz, D., Moncol, J., et al: ‘Free radicals and antioxidants in normal physiological functions and human disease’, Int. J. Biochem. Cell Biol., 2006, 7, pp. 4578.
    6. 6)
      • 33. Munzuroglu, O., Geckil, H.: ‘Effects of metals on seed germination, root elongation, and coleoptile and hypocotyl growth in triticum aestivum and cucumis sativus’, Arch. Environ. Contamin. Toxicol., 2002, 43, pp. 203213.
    7. 7)
      • 8. Hussain, M., Raja, N.I., Iqbal, M., et al: ‘Plantlets regeneration via somatic embryogenesis from the nucellus tissues of Kinnow Mandarin (Citrus reticulata L.)’, Am. J. Plant Sci., 2016, 7, pp. 798805.
    8. 8)
      • 37. Khan, M.S., Zaka, M., Abbasi, B.H., et al: ‘Seed germination and biochemical profile of Silybum marianum exposed to monometallic and bimetallic alloy nanoparticles’, IET Nanobiotechnol., 2016, 10, (6), pp. 18.
    9. 9)
      • 19. Ali, M., Kim, B., Belfield, K.D., et al: ‘Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract – a comprehensive study’, Mater. Sci. Eng., 2016, 58, pp. 359365.
    10. 10)
      • 23. Ushahra, J., Malik, C.P.: ‘Putrescine and ascorbic acid mediated enhancement in growth and antioxidant status of Eruca sativa varieties’, CIB. Tech. J. Biotechnol., 2013, 2, pp. 5364.
    11. 11)
      • 3. Mittal, A.K., Chisti, Y., Banerjee, U.C.: ‘Synthesis of metallic nanoparticles using plant extracts’, Biotechnol. Adv., 2013, 31, pp. 346356.
    12. 12)
      • 29. Rauwel, P., Küünal, S., Ferdov, S., et al: ‘A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM’, Adv. Mater Sci. Eng., 2015, pp. 19.
    13. 13)
      • 39. Parsaeimehr, A., Sargsyan, E., Javidnia, K.: ‘A comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra’, Molecules, 2010, 15, pp. 16681678.
    14. 14)
      • 4. Tao, A., Sinsermsuksakul, P., Yang, P.: ‘Polyhedral silver nanocrystals with distinct scattering signatures’, Angew. Chem. Int. Ed., 2006, 45, pp. 45974601.
    15. 15)
      • 34. Kordan, H.A.: ‘Seed viability and germination: a multi-purpose experimental system’, J. Biol. Educ., 1992, 26, pp. 247251.
    16. 16)
      • 42. Meratan, A.A., Gaffari, S.M., Nikram, V.: ‘In vitro organogenesis and antioxidant enzymes activity in Acanthophyllum sordidum’, Biol. Plantarum, 2009, 53, pp. 510.
    17. 17)
      • 20. Savithramma, N., Ankanna, S., Bhumi, G.: ‘Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata – an endemic and endangered medicinal tree taxon’, Nano Vis., 2012, 2, pp. 6168.
    18. 18)
      • 41. Tariq, U., Ali, M., Abbasi, B.H.: ‘Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L’, J. Photochem. Photobiol., 2014, 130, pp. 264271.
    19. 19)
      • 32. Lee, W., An, Y., Yoon, H.: ‘Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolusradiatus) and wheat (Triticum aestivum): plant uptake for water insoluble nanoparticles’, Environ. Toxicol. Chem., 2008, 27, pp. 19151921.
    20. 20)
      • 7. Kapoor, S., Lawless, D., Kennepohl, P., et al: ‘Reduction and aggregation of silver ions in aqueous gelatin solutions’, Langmuir, 1994, 10, pp. 30183022.
    21. 21)
      • 15. Larue, C., Laurette, J., Herlin-Boime, N., et al: ‘Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase’, Sci. Total Environ., 2012, 431, pp. 197208.
    22. 22)
      • 38. Hemm, M.R., Rider, S.D., Ogas, J., et al: ‘Light induces phenylpropanoid metabolism in Arabidopsis roots’, Plant J., 2004, 38, pp. 765778.
    23. 23)
      • 40. Costa, P., Gonçalves, S., Valentao, P., et al: ‘Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity’, Food Chem., 2012, 135, pp. 12531260.
    24. 24)
      • 2. Sun, T., Zhang, Y.S., Pang, B., et al: ‘Engineered nanoparticles for drug delivery in cancer therapy’, Angew. Chem. Int. Ed., 2014, 53, pp. 1232012364.
    25. 25)
      • 35. Murata, M.R., Hammes, P.S., Zharare, G.E.: ‘Effect of solution pH and calcium concentration on germination and early growth of groundnut’, J. Plant Nutr., 2003, 26, pp. 12471262.
    26. 26)
      • 17. Shah, V., Belozerova, I.: ‘Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds’, Water Air Soil Pollut., 2009, 197, pp. 143148.
    27. 27)
      • 6. Park, Y., Noh, H.J., Han, L., et al: ‘Artemisia capillaris extracts as a green factory for the synthesis of silver nanoparticles with antibacterial activities’, J. Nanosci. Nanotechnol., 2012, 12, pp. 70877095.
    28. 28)
      • 18. Kim, J.S., Kuk, E., Yu, K.N.: ‘Antimicrobial effects of silver nanoparticles’, Nanomed., 2007, 3, pp. 95101.
    29. 29)
      • 14. Ma, X., Geiser-Lee, J., Deng, Y., et al: ‘Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation’, Sci. Total Environ., 2010, 408, pp. 30533061.
    30. 30)
      • 10. Ugandhar, T., Venkateshwarlu, M., Sammailah, D., et al: ‘Rapid In vitro micro propagation of chick pea (Cicer arietinum L.) from shoot tip and cotyledonary node explants’, J. Biotechnol. Biomater., 2012, 2, p. 148.
    31. 31)
      • 12. Kumar, V., Yadav, S.K.: ‘Plant-mediated synthesis of silver and gold nanoparticles and their applications’, J. Chem. Technol. Biotechnol., 2009, 84, pp. 151157.
    32. 32)
      • 1. Lin, D., Xing, B.: ‘Phytotoxicity of nanoparticles: inhibition of seed germination and root growth’, Environ. Pollut., 2007, 150, pp. 243250.
    33. 33)
      • 27. Lowry, O.H., Rosebrough, N.J., Farr, A.I., et al: ‘Protein measurement with the folin phenol reagent’, J. Biol. Biochem., 1951, 193, pp. 265275.
    34. 34)
      • 31. El-Temsah, Y.S., Joner, E.J.: ‘Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil’, Environ. Toxicol., 2012, 27, pp. 4249.
    35. 35)
      • 21. Iqbal, M., Asif, S., Ilyas, N., et al: ‘Effect of plant derived smoke on germination and post germination expression of wheat (Triticum aestivum L.)’, Am. J. Plant Sci., 2016, 7, pp. 806813.
    36. 36)
      • 5. Singh, A., Jain, D., Upadhyay, M., et al: ‘Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities’, Dig. J. Nanomat. Biosci., 2010, 5, pp. 483489.
    37. 37)
      • 28. Ullah, N., Haq, I.U., Safdar, N.: ‘Physiological and biochemical mechanisms of allelopathy mediated by the allelochemical extracts of Phytolacca latbenia (Moq.) H. Walter’, Toxicol. Ind. Health, 2015, 31, pp. 931937.
    38. 38)
      • 22. Abdul-Baki, A.A., Anderson, J.D.: ‘Vigor determination in soybean and seed multiple criteria’, Crop Sci., 1973, 13, pp. 630633.
    39. 39)
      • 43. Priyadarshini, S., Deepesh, B., Zaidi, M.G.H., et al: ‘Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea’, Appl. Biochem. Biotechnol., 2012, 167, pp. 22252233.
    40. 40)
      • 36. Zafar, H., Ali, A., Ali, J.S., et al: ‘Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response’, Front. Plant Sci., 2016, 7, pp. 18.
    41. 41)
      • 26. Chang, C., Yang, M., Wen, H., et al: ‘Estimation of total flavonoid content in propolis by two complimentary colorimetric method’, J. Food Drug Anal., 2002, 10, pp. 178182.
    42. 42)
      • 11. Oggema, J.N., Kinyua, M.G., Ouma, J.P., et al: ‘Agronomic performance of locally adapted sweet potato (Ipomoea batatas (L.) Lam.) cultivars derived from tissue culture regenerated plants’, African. J. Biotechnol., 2007, 6, pp. 14181425.
    43. 43)
      • 24. Abbasi, B.H., Khan, M.A., Mahmood, T., et al: ‘Shoot regeneration and free radical scavenging activity in Silybum marianum L.’, Plant Cell Tissue Organ Cult., 2010, 101, pp. 371376.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0256
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0256
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address