http://iet.metastore.ingenta.com
1887

Biosynthesis of the CuO nanoparticles using Euphorbia Chamaesyce leaf extract and investigation of their catalytic activity for the reduction of 4-nitrophenol

Biosynthesis of the CuO nanoparticles using Euphorbia Chamaesyce leaf extract and investigation of their catalytic activity for the reduction of 4-nitrophenol

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Through this study an eco-friendly, simple, efficient, cheap and biocompatible approach to the biosynthesis and stabilisation of CuO nanoparticles (NPs) using the Euphorbia Chamaesyce leaf extract is presented. The CuO NPs were monitored and characterised by field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, transmission electron microscope and UV-visible spectroscopy. The biosynthesised CuO NPs showed good catalytic activity for the reduction of 4-nitrophenol (4-NP) in water during 180 s and reused 4 times without considerable loss of activity.

References

    1. 1)
      • R. Emmanuel , C. Karuppiah , S.M. Chen .
        1. Emmanuel, R., Karuppiah, C., Chen, S.M., et al: ‘Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia’, J. Hazard. Mater., 2014, 279, pp. 117124.
        . J. Hazard. Mater. , 117 - 124
    2. 2)
      • S. Saha , A. Pal , S. Kundu .
        2. Saha, S., Pal, A., Kundu, S., et al: ‘Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction’, Langmuir, 2010, 26, (4), pp. 28852893.
        . Langmuir , 4 , 2885 - 2893
    3. 3)
      • O.A. O'Connor , L.Y. Young .
        3. O'Connor, O.A., Young, L.Y.: ‘Toxicity and anaerobic biodegradability of substituted phenols under methanogenic conditions’, Environ. Toxicol. Chem., 1989, 8, (10), pp. 853862.
        . Environ. Toxicol. Chem. , 10 , 853 - 862
    4. 4)
      • P. Cañizares , C. Sáez , J. Lobato .
        4. Cañizares, P., Sáez, C., Lobato, J., et al: ‘Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes’, Ind. Eng. Chem. Res., 2004, 43, (9), pp. 19441951.
        . Ind. Eng. Chem. Res. , 9 , 1944 - 1951
    5. 5)
      • E. Marais , T. Nyokong .
        5. Marais, E., Nyokong, T.: ‘Adsorption of 4-nitrophenol onto Amberlite® IRA-900 modified with metallophthalocyanines’, J. Hazard. Mater., 2008, 152, (1), pp. 293301.
        . J. Hazard. Mater. , 1 , 293 - 301
    6. 6)
      • J.R. Chiou , B.H. Lai , K.C. Hsu .
        6. Chiou, J.R., Lai, B.H., Hsu, K.C., et al: ‘One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction’, J. Hazard. Mater., 2013, 248-249, pp. 394400.
        . J. Hazard. Mater. , 394 - 400
    7. 7)
      • C. Wang , H. Zhang , C. Feng .
        7. Wang, C., Zhang, H., Feng, C., et al: ‘Multifunctional Pd@MOF core–shell nanocomposite as highly active catalyst for p-nitrophenol reduction’, Catal. Commun., 2015, 72, pp. 2932.
        . Catal. Commun. , 29 - 32
    8. 8)
      • Y. Zheng , J. Shu , Z. Wang .
        8. Zheng, Y., Shu, J., Wang, Z.: ‘AgCl@Ag composites with rough surfaces as bifunctional catalyst for the photooxidation and catalytic reduction of 4-nitrophenol’, Mater. Lett., 2015, 158, pp. 339342.
        . Mater. Lett. , 339 - 342
    9. 9)
      • S.P. Deshmukh , R.K. Dhokale , H.M. Yadav .
        9. Deshmukh, S.P., Dhokale, R.K., Yadav, H.M., et al: ‘Titania–supported silver nanoparticles: An efficient and reusable catalyst for reduction of 4-nitrophenol’, Appl. Surf. Sci., 2013, 273, pp. 676683.
        . Appl. Surf. Sci. , 676 - 683
    10. 10)
      • P. Herves , M. Pérez-Lorenzo , L.M. Liz-Marzán .
        10. Herves, P., Pérez-Lorenzo, M., Liz-Marzán, L.M., et al: ‘Catalysis by metallic nanoparticles in aqueous solution: model reactions’, Chem. Soc. Rev., 2012, 41, pp. 55775587.
        . Chem. Soc. Rev. , 5577 - 5587
    11. 11)
      • M.J. Vaidya , S.M. Kulkarni , R.V. Chaudhari .
        11. Vaidya, M.J., Kulkarni, S.M., Chaudhari, R.V.: ‘Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol’, Org. Process Res. Dev., 2003, 7, (2), pp. 202208.
        . Org. Process Res. Dev. , 2 , 202 - 208
    12. 12)
      • M.L. Kantam , R. Chakravarti , U. Pal .
        12. Kantam, M.L., Chakravarti, R., Pal, U., et al: ‘Nanocrystalline magnesium oxide-stabilized palladium(0): an efficient and reusable catalyst for selective reduction of nitro compounds’, Adv. Synth. Catal., 2008, 350, (6), pp. 822827.
        . Adv. Synth. Catal. , 6 , 822 - 827
    13. 13)
      • J.-H. Noh , R. Meijboom .
        13. Noh, J.-H., Meijboom, R.: ‘Synthesis and catalytic evaluation of dendrimer-templated and reverse microemulsion Pd and Pt nanoparticles in the reduction of 4-nitrophenol: The effect of size and synthetic methodologies’, Appl. Catal. A Gen., 2015, 497, pp. 107120.
        . Appl. Catal. A Gen. , 107 - 120
    14. 14)
      • M. Takasaki , Y. Motoyama , K. Higashi .
        14. Takasaki, M., Motoyama, Y., Higashi, K., et al: ‘Chemoselective hydrogenation of nitroarenes with carbon nanofiber-supported platinum and palladium nanoparticles’, Org. Lett., 2008, 10, (8), pp. 16011604.
        . Org. Lett. , 8 , 1601 - 1604
    15. 15)
      • M. Atarod , M. Nasrollahzadeh , S.M. Sajadi .
        15. Atarod, M., Nasrollahzadeh, M., Sajadi, S.M.: ‘Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water’, J. Colloid Interface Sci., 2016, 462, pp. 272279.
        . J. Colloid Interface Sci. , 272 - 279
    16. 16)
      • X. Chen , S.S. Mao .
        16. Chen, X., Mao, S.S.: ‘Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications’, Chem. Rev., 2007, 107, (7), pp. 28912959.
        . Chem. Rev. , 7 , 2891 - 2959
    17. 17)
      • Z.S. Hong , Y. Cao , J.F. Deng .
        17. Hong, Z.S., Cao, Y., Deng, J.F.: ‘A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles’, Mater. Lett., 2002, 52, (1–2), pp. 3438.
        . Mater. Lett. , 34 - 38
    18. 18)
      • H. Chen , G. Jhao , Y. Liu .
        18. Chen, H., Jhao, G., Liu, Y.: ‘Low-temperature solution synthesis of CuO nanorods with thin diameter’, Mater. Lett., 2013, 93, pp. 6063.
        . Mater. Lett. , 60 - 63
    19. 19)
      • T.X. Wang , S.H. Xu , F.X. Yang .
        19. Wang, T.X., Xu, S.H., Yang, F.X.: ‘Green synthesis of CuO nanoflakes from CuCO3.Cu(OH)2 powder and H2O2 aqueous solution’, Powder Technol., 2012, 228, pp. 128130.
        . Powder Technol. , 128 - 130
    20. 20)
      • C.Y. Chiang , K. Aroh , N. Franson .
        20. Chiang, C.Y., Aroh, K., Franson, N., et al: ‘Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting – Part II. Photoelectrochemical study’, Int. J. Hydrogen Energy, 2011, 36, (24), pp. 1551915526.
        . Int. J. Hydrogen Energy , 24 , 15519 - 15526
    21. 21)
      • M. Nasrollahzadeh , M. Maham , S.M. Sajadi .
        21. Nasrollahzadeh, M., Maham, M., Sajadi, S.M.: ‘Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureas and reduction of 4-nitrophenol’, J. Colloid Interface Sci., 2015, 455, pp. 245253.
        . J. Colloid Interface Sci. , 245 - 253
    22. 22)
      • M. Nasrollahzadeh , S.M. Sajadi , A. Rostami-Vartooni .
        22. Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., et al: ‘Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines’, J. Colloid Interface Sci., 2016, 466, pp. 113119.
        . J. Colloid Interface Sci. , 113 - 119
    23. 23)
      • M. Nasrollahzadeh , S.M. Sajadi , M. Maham .
        23. Nasrollahzadeh, M., Sajadi, S.M., Maham, M.: ‘Tamarix gallica leaf extract mediated novel route for green synthesis of CuO nanoparticles and their application for N-arylation of nitrogen-containing heterocycles under ligand-free conditions’, RSC Adv., 2015, 5, pp. 4062840635.
        . RSC Adv. , 40628 - 40635
    24. 24)
      • X.-D. Yang , L.-L. Jiang , C.-J. Mao .
        24. Yang, X.-D., Jiang, L.-L., Mao, C.-J., et al: ‘Sonochemical synthesis and nonlinear optical property of CuO hierarchical superstructures. Sonochemical synthesis and nonlinear optical property of CuO hierarchical superstructures’, Mater. Lett., 2014, 115, pp. 121124.
        . Mater. Lett. , 121 - 124
    25. 25)
      • B. Toboonsung , P. Singjai .
        25. Toboonsung, B., Singjai, P.: ‘Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process’, J. Alloys Compd., 2011, 509, (10), pp. 41324137.
        . J. Alloys Compd. , 10 , 4132 - 4137
    26. 26)
      • M.A. Dar , Q. Ahsanulhaq , Y.S. Kim .
        26. Dar, M.A., Ahsanulhaq, Q., Kim, Y.S., et al: ‘Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism’, Appl. Surf. Sci., 2009, 255, (12), pp. 62796284.
        . Appl. Surf. Sci. , 12 , 6279 - 6284
    27. 27)
      • X. Xu , M. Zhang , J. Feng .
        27. Xu, X., Zhang, M., Feng, J., et al: ‘Shape-controlled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid’, Mater. Lett., 2008, 62, (17-18), pp. 27872790.
        . Mater. Lett. , 2787 - 2790
    28. 28)
      • F. Duman , I. Ocsoy , F. Ozturk Kup .
        28. Duman, F., Ocsoy, I., Ozturk Kup, F.: ‘Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties’, Mater. Sci. Eng. C., 2016, 60, pp. 333338.
        . Mater. Sci. Eng. C. , 333 - 338
    29. 29)
      • X. Zhang , S. Yan , R.D. Tyagi .
        29. Zhang, X., Yan, S., Tyagi, R.D., et al: ‘Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates’, Chemosphere, 2011, 82, (4), pp. 489494.
        . Chemosphere , 4 , 489 - 494
    30. 30)
      • M. Ramesh , M. Anbuvannan , G. Viruthagiri .
        30. Ramesh, M., Anbuvannan, M., Viruthagiri, G.: ‘Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity’, Spectrochim. Acta, A, 2015, 136, (Part B), pp. 864870.
        . Spectrochim. Acta, A , 864 - 870
    31. 31)
      • S. Ahmed , S. Ikram .
        31. Ahmed, S., Ikram, S.: ‘Chitosan & its derivatives: a review in recent innovations’, Int. J. Pharm. Sci. Res., 2015, 6, (1), pp. 1430.
        . Int. J. Pharm. Sci. Res. , 1 , 14 - 30
    32. 32)
      • K. Mukunthan , S. Balaji .
        32. Mukunthan, K., Balaji, S.: ‘Cashew apple juice [Anacardium occidentale L.] speeds up the synthesis of silver nanoparticles’, Int. J. Green Nanotechnol., 2012, 4, (2), pp. 7179.
        . Int. J. Green Nanotechnol. , 2 , 71 - 79
    33. 33)
      • S. Gudin .
        33. Gudin, S.: ‘Rose: genetics and breeding’, Plant Breed. Rev., 2000, 17, pp. 159189.
        . Plant Breed. Rev. , 159 - 189
    34. 34)
      • R.C. Monica , R. Cremonini .
        34. Monica, R.C., Cremonini, R.: ‘Nanoparticles and higher plants’, Caryologia, 2009, 62, (2), pp. 161165.
        . Caryologia , 2 , 161 - 165
    35. 35)
      • S.M. Sajadi , M. Maham , P. Salaryan .
        35. Sajadi, S.M., Maham, M., Salaryan, P., et al: ‘Optimal extraction method of phenolics from the root of Euphorbia condylocarpa’, Chem. Nat. Compd., 2011, 47, (3), pp. 434435.
        . Chem. Nat. Compd. , 3 , 434 - 435
    36. 36)
      • M. Ernst , O.M. Grace , C.H. Saslis-Lagoudakis .
        36. Ernst, M., Grace, O.M., Saslis-Lagoudakis, C.H., et al: ‘Global medicinal uses of euphorbia L. (Euphorbiaceae)’, J. Ethnopharmacol., 2015, 176, pp. 90101.
        . J. Ethnopharmacol. , 90 - 101
    37. 37)
      • M. Noori , A. Chehreghani , M. Kaveh .
        37. Noori, M., Chehreghani, A., Kaveh, M.: ‘Flavonoids of 17 species of euphorbia (Euphorbiaceae) in Iran’, Environ. Chem, 2009, 91, (4), pp. 631641.
        . Environ. Chem , 4 , 631 - 641
    38. 38)
      • A.R. Jassbi .
        38. Jassbi, A.R.: ‘Chemistry and biological activity of secondary metabolites in euphorbia from Iran’, Phytochemistry, 2006, 67, (18), pp. 19771984.
        . Phytochemistry , 18 , 1977 - 1984
    39. 39)
      • Z. Issaabadi , M. Nasrollahzadeh , S.M. Sajadi .
        39. Issaabadi, Z., Nasrollahzadeh, M., Sajadi, S.M.: ‘Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity’, J. Clean. Prod., 2017, 142, pp. 35843591.
        . J. Clean. Prod. , 3584 - 3591
    40. 40)
      • M. Atarod , M. Nasrollahzadeh , S.M. Sajadi .
        40. Atarod, M., Nasrollahzadeh, M., Sajadi, S.M.: ‘Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol’, J. Colloid Interface Sci., 2016, 465, pp. 249258.
        . J. Colloid Interface Sci. , 249 - 258
    41. 41)
      • J.G. Ehrenfeld .
        41. Ehrenfeld, J.G.: ‘Pollination of three species of euphorbia subgenus chamaesyce, with special reference to bees’, Am. Midl. Nat., 1979, 101, (1), pp. 8798.
        . Am. Midl. Nat. , 1 , 87 - 98
    42. 42)
      • J. Kukic , V. Popovic , S. Petrovic .
        42. Kukic, J., Popovic, V., Petrovic, S., et al: ‘Antioxidant and antimicrobial activity of Cynara cardunculus extracts’, Food Chem., 2008, 107, (2), pp. 861868.
        . Food Chem. , 2 , 861 - 868
    43. 43)
      • N. Thitilertdecha , A. Teerawutgulrag , N. Rakariyatham .
        43. Thitilertdecha, N., Teerawutgulrag, A., Rakariyatham, N.: ‘Antioxidant and antibacterial activities of Nephelium lappaceum L. extracts’, LWT-Food Sci. Technol., 2008, 41, (10), pp. 20292035.
        . LWT-Food Sci. Technol. , 10 , 2029 - 2035
    44. 44)
      • L. Cao , J.Y. Si , Y. Liu .
        44. Cao, L., Si, J.Y., Liu, Y., et al: ‘Essential oil composition, antimicrobial and antioxidant properties of Mosla chinensis Maxim’, Food Chem., 2009, 115, (3), pp. 801805.
        . Food Chem. , 3 , 801 - 805
    45. 45)
      • E.L. Hayouni , M. Abedrabba , M. Bouix .
        45. Hayouni, E.L., Abedrabba, M., Bouix, M., et al: ‘The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts’, Food Chem., 2007, 105, (3), pp. 11261134.
        . Food Chem. , 3 , 1126 - 1134
    46. 46)
      • V.B. Sujata , B.A. Nagasampagi , M. Sivakumar . (2006)
        46. Sujata, V.B., Nagasampagi, B.A., Sivakumar, M.: ‘Chemistry of natural products’ (Narosa Publishing house, New Delhi, 2006), pp. 585638.
        .
    47. 47)
      • Z.-X. Zhang , X.-W. Wang , K.L. Wu .
        47. Zhang, Z.-X., Wang, X.-W., Wu, K.L., et al: ‘Co0.85Se bundle-like nanostructure catalysts for hydrogenation of 4-nitrophenol to 4-aminophenol’, New J. Chem., 2014, 38, pp. 61476151.
        . New J. Chem. , 6147 - 6151
    48. 48)
      • H. Li , J. Liao , T. Zeng .
        48. Li, H., Liao, J., Zeng, T.: ‘Application of Co/Ti film catalysts with different nanostructures in the reduction of p-nitrophenol to p-aminophenol’, Catal. Sci. Technol., 2014, 4, pp. 681687.
        . Catal. Sci. Technol. , 681 - 687
    49. 49)
      • K.-L. Wu , X.-W. Wei , X.-M. Zhou .
        49. Wu, K.-L., Wei, X.-W., Zhou, X.-M., et al: ‘NiCo2 alloys: controllable synthesis, magnetic properties, and catalytic applications in reduction of 4-nitrophenol’, J. Phys. Chem. C, 2011, 115, (33), pp. 1626816274.
        . J. Phys. Chem. C , 33 , 16268 - 16274
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0254
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0254
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address