Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Biosynthesis of the CuO nanoparticles using Euphorbia Chamaesyce leaf extract and investigation of their catalytic activity for the reduction of 4-nitrophenol

Through this study an eco-friendly, simple, efficient, cheap and biocompatible approach to the biosynthesis and stabilisation of CuO nanoparticles (NPs) using the Euphorbia Chamaesyce leaf extract is presented. The CuO NPs were monitored and characterised by field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transformed infrared spectroscopy, transmission electron microscope and UV-visible spectroscopy. The biosynthesised CuO NPs showed good catalytic activity for the reduction of 4-nitrophenol (4-NP) in water during 180 s and reused 4 times without considerable loss of activity.

References

    1. 1)
      • 24. Yang, X.-D., Jiang, L.-L., Mao, C.-J., et al: ‘Sonochemical synthesis and nonlinear optical property of CuO hierarchical superstructures. Sonochemical synthesis and nonlinear optical property of CuO hierarchical superstructures’, Mater. Lett., 2014, 115, pp. 121124.
    2. 2)
      • 40. Atarod, M., Nasrollahzadeh, M., Sajadi, S.M.: ‘Green synthesis of Pd/RGO/Fe3O4 nanocomposite using Withania coagulans leaf extract and its application as magnetically separable and reusable catalyst for the reduction of 4-nitrophenol’, J. Colloid Interface Sci., 2016, 465, pp. 249258.
    3. 3)
      • 28. Duman, F., Ocsoy, I., Ozturk Kup, F.: ‘Chamomile flower extract-directed CuO nanoparticle formation for its antioxidant and DNA cleavage properties’, Mater. Sci. Eng. C., 2016, 60, pp. 333338.
    4. 4)
      • 30. Ramesh, M., Anbuvannan, M., Viruthagiri, G.: ‘Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity’, Spectrochim. Acta, A, 2015, 136, (Part B), pp. 864870.
    5. 5)
      • 11. Vaidya, M.J., Kulkarni, S.M., Chaudhari, R.V.: ‘Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol’, Org. Process Res. Dev., 2003, 7, (2), pp. 202208.
    6. 6)
      • 20. Chiang, C.Y., Aroh, K., Franson, N., et al: ‘Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting – Part II. Photoelectrochemical study’, Int. J. Hydrogen Energy, 2011, 36, (24), pp. 1551915526.
    7. 7)
      • 4. Cañizares, P., Sáez, C., Lobato, J., et al: ‘Electrochemical treatment of 4-nitrophenol-containing aqueous wastes using boron-doped diamond anodes’, Ind. Eng. Chem. Res., 2004, 43, (9), pp. 19441951.
    8. 8)
      • 22. Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., et al: ‘Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines’, J. Colloid Interface Sci., 2016, 466, pp. 113119.
    9. 9)
      • 19. Wang, T.X., Xu, S.H., Yang, F.X.: ‘Green synthesis of CuO nanoflakes from CuCO3.Cu(OH)2 powder and H2O2 aqueous solution’, Powder Technol., 2012, 228, pp. 128130.
    10. 10)
      • 6. Chiou, J.R., Lai, B.H., Hsu, K.C., et al: ‘One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction’, J. Hazard. Mater., 2013, 248-249, pp. 394400.
    11. 11)
      • 2. Saha, S., Pal, A., Kundu, S., et al: ‘Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction’, Langmuir, 2010, 26, (4), pp. 28852893.
    12. 12)
      • 29. Zhang, X., Yan, S., Tyagi, R.D., et al: ‘Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates’, Chemosphere, 2011, 82, (4), pp. 489494.
    13. 13)
      • 31. Ahmed, S., Ikram, S.: ‘Chitosan & its derivatives: a review in recent innovations’, Int. J. Pharm. Sci. Res., 2015, 6, (1), pp. 1430.
    14. 14)
      • 18. Chen, H., Jhao, G., Liu, Y.: ‘Low-temperature solution synthesis of CuO nanorods with thin diameter’, Mater. Lett., 2013, 93, pp. 6063.
    15. 15)
      • 34. Monica, R.C., Cremonini, R.: ‘Nanoparticles and higher plants’, Caryologia, 2009, 62, (2), pp. 161165.
    16. 16)
      • 35. Sajadi, S.M., Maham, M., Salaryan, P., et al: ‘Optimal extraction method of phenolics from the root of Euphorbia condylocarpa’, Chem. Nat. Compd., 2011, 47, (3), pp. 434435.
    17. 17)
      • 1. Emmanuel, R., Karuppiah, C., Chen, S.M., et al: ‘Green synthesis of gold nanoparticles for trace level detection of a hazardous pollutant (nitrobenzene) causing Methemoglobinaemia’, J. Hazard. Mater., 2014, 279, pp. 117124.
    18. 18)
      • 17. Hong, Z.S., Cao, Y., Deng, J.F.: ‘A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles’, Mater. Lett., 2002, 52, (1–2), pp. 3438.
    19. 19)
      • 25. Toboonsung, B., Singjai, P.: ‘Formation of CuO nanorods and their bundles by an electrochemical dissolution and deposition process’, J. Alloys Compd., 2011, 509, (10), pp. 41324137.
    20. 20)
      • 13. Noh, J.-H., Meijboom, R.: ‘Synthesis and catalytic evaluation of dendrimer-templated and reverse microemulsion Pd and Pt nanoparticles in the reduction of 4-nitrophenol: The effect of size and synthetic methodologies’, Appl. Catal. A Gen., 2015, 497, pp. 107120.
    21. 21)
      • 48. Li, H., Liao, J., Zeng, T.: ‘Application of Co/Ti film catalysts with different nanostructures in the reduction of p-nitrophenol to p-aminophenol’, Catal. Sci. Technol., 2014, 4, pp. 681687.
    22. 22)
      • 37. Noori, M., Chehreghani, A., Kaveh, M.: ‘Flavonoids of 17 species of euphorbia (Euphorbiaceae) in Iran’, Environ. Chem, 2009, 91, (4), pp. 631641.
    23. 23)
      • 45. Hayouni, E.L., Abedrabba, M., Bouix, M., et al: ‘The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts’, Food Chem., 2007, 105, (3), pp. 11261134.
    24. 24)
      • 5. Marais, E., Nyokong, T.: ‘Adsorption of 4-nitrophenol onto Amberlite® IRA-900 modified with metallophthalocyanines’, J. Hazard. Mater., 2008, 152, (1), pp. 293301.
    25. 25)
      • 47. Zhang, Z.-X., Wang, X.-W., Wu, K.L., et al: ‘Co0.85Se bundle-like nanostructure catalysts for hydrogenation of 4-nitrophenol to 4-aminophenol’, New J. Chem., 2014, 38, pp. 61476151.
    26. 26)
      • 43. Thitilertdecha, N., Teerawutgulrag, A., Rakariyatham, N.: ‘Antioxidant and antibacterial activities of Nephelium lappaceum L. extracts’, LWT-Food Sci. Technol., 2008, 41, (10), pp. 20292035.
    27. 27)
      • 10. Herves, P., Pérez-Lorenzo, M., Liz-Marzán, L.M., et al: ‘Catalysis by metallic nanoparticles in aqueous solution: model reactions’, Chem. Soc. Rev., 2012, 41, pp. 55775587.
    28. 28)
      • 46. Sujata, V.B., Nagasampagi, B.A., Sivakumar, M.: ‘Chemistry of natural products’ (Narosa Publishing house, New Delhi, 2006), pp. 585638.
    29. 29)
      • 32. Mukunthan, K., Balaji, S.: ‘Cashew apple juice [Anacardium occidentale L.] speeds up the synthesis of silver nanoparticles’, Int. J. Green Nanotechnol., 2012, 4, (2), pp. 7179.
    30. 30)
      • 23. Nasrollahzadeh, M., Sajadi, S.M., Maham, M.: ‘Tamarix gallica leaf extract mediated novel route for green synthesis of CuO nanoparticles and their application for N-arylation of nitrogen-containing heterocycles under ligand-free conditions’, RSC Adv., 2015, 5, pp. 4062840635.
    31. 31)
      • 33. Gudin, S.: ‘Rose: genetics and breeding’, Plant Breed. Rev., 2000, 17, pp. 159189.
    32. 32)
      • 14. Takasaki, M., Motoyama, Y., Higashi, K., et al: ‘Chemoselective hydrogenation of nitroarenes with carbon nanofiber-supported platinum and palladium nanoparticles’, Org. Lett., 2008, 10, (8), pp. 16011604.
    33. 33)
      • 8. Zheng, Y., Shu, J., Wang, Z.: ‘AgCl@Ag composites with rough surfaces as bifunctional catalyst for the photooxidation and catalytic reduction of 4-nitrophenol’, Mater. Lett., 2015, 158, pp. 339342.
    34. 34)
      • 3. O'Connor, O.A., Young, L.Y.: ‘Toxicity and anaerobic biodegradability of substituted phenols under methanogenic conditions’, Environ. Toxicol. Chem., 1989, 8, (10), pp. 853862.
    35. 35)
      • 42. Kukic, J., Popovic, V., Petrovic, S., et al: ‘Antioxidant and antimicrobial activity of Cynara cardunculus extracts’, Food Chem., 2008, 107, (2), pp. 861868.
    36. 36)
      • 21. Nasrollahzadeh, M., Maham, M., Sajadi, S.M.: ‘Green synthesis of CuO nanoparticles by aqueous extract of Gundelia tournefortii and evaluation of their catalytic activity for the synthesis of N-monosubstituted ureas and reduction of 4-nitrophenol’, J. Colloid Interface Sci., 2015, 455, pp. 245253.
    37. 37)
      • 41. Ehrenfeld, J.G.: ‘Pollination of three species of euphorbia subgenus chamaesyce, with special reference to bees’, Am. Midl. Nat., 1979, 101, (1), pp. 8798.
    38. 38)
      • 7. Wang, C., Zhang, H., Feng, C., et al: ‘Multifunctional Pd@MOF core–shell nanocomposite as highly active catalyst for p-nitrophenol reduction’, Catal. Commun., 2015, 72, pp. 2932.
    39. 39)
      • 16. Chen, X., Mao, S.S.: ‘Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications’, Chem. Rev., 2007, 107, (7), pp. 28912959.
    40. 40)
      • 9. Deshmukh, S.P., Dhokale, R.K., Yadav, H.M., et al: ‘Titania–supported silver nanoparticles: An efficient and reusable catalyst for reduction of 4-nitrophenol’, Appl. Surf. Sci., 2013, 273, pp. 676683.
    41. 41)
      • 39. Issaabadi, Z., Nasrollahzadeh, M., Sajadi, S.M.: ‘Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity’, J. Clean. Prod., 2017, 142, pp. 35843591.
    42. 42)
      • 27. Xu, X., Zhang, M., Feng, J., et al: ‘Shape-controlled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid’, Mater. Lett., 2008, 62, (17-18), pp. 27872790.
    43. 43)
      • 12. Kantam, M.L., Chakravarti, R., Pal, U., et al: ‘Nanocrystalline magnesium oxide-stabilized palladium(0): an efficient and reusable catalyst for selective reduction of nitro compounds’, Adv. Synth. Catal., 2008, 350, (6), pp. 822827.
    44. 44)
      • 49. Wu, K.-L., Wei, X.-W., Zhou, X.-M., et al: ‘NiCo2 alloys: controllable synthesis, magnetic properties, and catalytic applications in reduction of 4-nitrophenol’, J. Phys. Chem. C, 2011, 115, (33), pp. 1626816274.
    45. 45)
      • 26. Dar, M.A., Ahsanulhaq, Q., Kim, Y.S., et al: ‘Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism’, Appl. Surf. Sci., 2009, 255, (12), pp. 62796284.
    46. 46)
      • 44. Cao, L., Si, J.Y., Liu, Y., et al: ‘Essential oil composition, antimicrobial and antioxidant properties of Mosla chinensis Maxim’, Food Chem., 2009, 115, (3), pp. 801805.
    47. 47)
      • 36. Ernst, M., Grace, O.M., Saslis-Lagoudakis, C.H., et al: ‘Global medicinal uses of euphorbia L. (Euphorbiaceae)’, J. Ethnopharmacol., 2015, 176, pp. 90101.
    48. 48)
      • 15. Atarod, M., Nasrollahzadeh, M., Sajadi, S.M.: ‘Euphorbia heterophylla leaf extract mediated green synthesis of Ag/TiO2 nanocomposite and investigation of its excellent catalytic activity for reduction of variety of dyes in water’, J. Colloid Interface Sci., 2016, 462, pp. 272279.
    49. 49)
      • 38. Jassbi, A.R.: ‘Chemistry and biological activity of secondary metabolites in euphorbia from Iran’, Phytochemistry, 2006, 67, (18), pp. 19771984.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0254
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0254
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address