Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Abiotic stress of ZnO-PEG, ZnO-PVP, CuO-PEG and CuO-PVP nanoparticles enhance growth, sweetener compounds and antioxidant activities in shoots of Stevia rebaudiana Bertoni

Nanoparticles are known to play remarkable role as abiotic stress elicitors in plants. This study reports the comparative analysis of effects produced by capped [zinc oxide (ZnO)-polyethylene glycol (PEG), ZnO-polyvinyl pyrrolidone (PVP), copper oxide (CuO)-PEG, CuO-PVP] and uncapped (ZnO and CuO) nanoparticles on the medicinal plant, Stevia rebaudiana raised in vitro for the production of commercially important sweetener compounds. In context of shoot organogenesis, ZnO-PEG, ZnO-PVP, CuO-PEG, CuO-PVP were employed to the growth medium that resulted in increased growth parameters, and larger content of steviol glycosides as compared to the shoots raised in medium containing ZnO and CuO, revealed by high-performance liquid chromatography. In the meanwhile, non-enzymatic antioxidant activities including total phenolic content, total flavonoid content, total antioxidant capacity, total reducing power and 2,2-diphenyl-1-picryl hydrazyl-free radical scavenging activity were calculated and showed comparatively greater amounts in shoots grown in medium containing capped ZnO or CuO nanoparticles. Furthermore, the ZnO and its derivatives revealed to be more reactive at 1 mg/l of concentration. Whereas, the CuO and its derivatives produced greater response on Stevia at 10 mg/l concentration of nanoparticles. This study paves the way for more such studies encompassing capped and uncapped nanoparticles and their ultimate effect on in-vitro grown plant tissues for the production of active metabolites on industrial scale.

References

    1. 1)
      • 22. Hendawey, M.H., Reda, E., Fadl, A.E., et al: ‘Biochemical role of some nanoparticles in the production of active constituents in Stevia rebaudiana L. callus’, Life Sci. J., 2015, 12, (7), pp. 144156.
    2. 2)
      • 1. Ying, J.: ‘Nanostructured materials’ (Academic Press, New York, 2001).
    3. 3)
      • 28. Zafar, H., Ali, A., Ali, J.S., et al: ‘Effect of ZnO nanoparticles on Brassica nigra seedlings and stem explants: growth dynamics and antioxidative response’, Front. Plant Sci., 2016, 20, (7), p. 535.
    4. 4)
      • 2. Xie, Y., He, Y., Irvin, P.L., et al: ‘Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni’, Appl. Environ. Microbiol., 2011, 77, (7), pp. 23252331.
    5. 5)
      • 29. Regier, N., Cosio, C., von Moos, N., et al: ‘Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii’, Chemosphere, 2015, 128, pp. 5661.
    6. 6)
      • 12. Ibrahim, I.A., Nasr, M.I., Mohammed, B.R., et al: ‘Plant growth regulators affecting in vitro cultivation of Stevia rebaudiana’, Sugar Tech., 2008, 10, (3), pp. 254259.
    7. 7)
      • 32. Nair, P.M., Chung, I.M.: ‘Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes’, Environ. Sci. Pollut. Res. Int., 2014, 21, (22), pp. 1270912722.
    8. 8)
      • 6. Tang, E., Cheng, G., Pang, X., et al: ‘Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property’, Coll. Polym. Sci., 2006, 284, (4), pp. 422428.
    9. 9)
      • 24. Jafri, L., Saleem, S., Haq, I.U., et al: ‘In vitro assessment of antioxidant potential and determination of polyphenolic compounds of Hedera nepalensis K. Koch’, Arab. J. Chem., 2014, 10, (2), pp. S3699S3706.
    10. 10)
      • 21. Javed, R., Usman, M., Yucesan, B., et al: ‘Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni’, Plant Physiol. Biochem., 2016, 110, pp. 9499.
    11. 11)
      • 16. Hassanen, S.A., Khalil, R.M.A.: ‘Biotechnological studies for improving of Stevia (Stevia rebaudiana Bertoni) in vitro plantlets’, Middle-East J. Sci. Res., 2013, 14, (1), pp. 93106.
    12. 12)
      • 8. Jayaprakash, J., Srinivasan, N., Chandrasekaran, P.: ‘Surface modifications of CuO nanoparticles using ethylene diamine tetra acetic acid as a capping agent by sol–gel routine’, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 5, (123), pp. 363368.
    13. 13)
      • 5. Xiong, H.M., Wang, Z.D., Liu, D.P., et al: ‘Bonding polyether onto ZnO nanoparticles: an effective method for preparing polymer nanocomposites with tunable luminescence and stable conductivity’, Adv. Funct. Mater., 2005, 15, (11), pp. 17511756.
    14. 14)
      • 19. Yadav, A.K., Singh, S., Dhyani, D.: ‘A review on the improvement of stevia [Stevia rebaudiana (Bertoni)]’, Can. J. Plant Sci., 2011, 91, (1), pp. 127.
    15. 15)
      • 30. Song, G., Hou, W., Gao, Y., et al: ‘Effects of CuO nanoparticles on Lemna minor’, Bot. Stud. Int. J., 2016, 57, p. 3.
    16. 16)
      • 13. Jain, P., Kachhwaha, S., Kothari, S.L.: ‘Optimization of micronutrients for the improvement of in vitro plant regeneration of Stevia rebaudiana (Bert.)’, Indian J. Biotechnol., 2012, 11, pp. 486490.
    17. 17)
      • 14. Jain, P., Kachhwaha, S., Kothari, S.L.: ‘Improved micropropagation protocol and enhancement in biomass and chlorophyll content in Stevia rebaudiana (Bert.) by using high copper levels in the culture medium’, Sci. Hortic., 2009, 119, (3), pp. 315319.
    18. 18)
      • 34. Desai, C.V., Desai, H.B., Suthar, K.P., et al: ‘Phytotoxicity of zinc-nanoparticles and its influence on stevioside production in Stevia rebaudiana Bertoni’, Appl. Biol. Res., 2015, 17, (1), pp. 17.
    19. 19)
      • 23. Murashige, T., Skoog, F.: ‘A revised medium for rapid growth and bioassays with tobacco tissue cultures’, Physiol. Plant, 1962, 15, (3), pp. 473497.
    20. 20)
      • 31. Da Costa, M.V.J., Sharma, P.K.: ‘Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa’, Photosynthetica, 2016, 54, (1), pp. 110119.
    21. 21)
      • 9. Sharma, A., Dutta, R.K., Roychowdhury, A., et al: ‘Studies on structural defects in bare, PVP capped and TPPO capped copper oxide nanoparticles by positron annihilation lifetime spectroscopy and their impact on photocatalytic degradation of rhodamine B’, RSC Adv., 2016, 6, pp. 7481274821.
    22. 22)
      • 33. Wang, X., Yang, X., Chen, S., et al: ‘Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis’, Front. Plant Sci., 2016, 12, (6), p. 1243.
    23. 23)
      • 10. Abiraman, T., Ramanathan, E., Kavitha, G., et al: ‘Synthesis of chitosan capped copper oxide nanoleaves using high intensity (30 kHz) ultrasound sonication and their application in antifouling coatings’, Ultrason. Sonochem., 2017, 34, pp. 781791.
    24. 24)
      • 11. Thiyagarajan, M., Venkatachalam, P.: ‘Large scale in vitro propagation of Stevia rebaudiana (bert) for commercial application: pharmaceutically important and antidiabetic medicinal herb’, Ind. Crops Prod., 2012, 37, (1), pp. 111117.
    25. 25)
      • 18. Taware, A.S., Mukadam, D.S., Chavan, A.M.: ‘Comparative studies of in vitro and in vivo grown plants and callus of Stevia rebaudiana (Bertoni)’, Int. J. Integr. Biol., 2010, 9, (1), pp. 1015.
    26. 26)
      • 7. Wysokowski, M., Motylenko, M., Stöcker, H., et al: ‘An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites’, J. Mater. Chem. B, 2013, 1, pp. 64696476.
    27. 27)
      • 3. Javed, R., Usman, M., Tabassum, S., et al: ‘Effect of capping agents: structural, optical and biological activities of ZnO nanoparticles’, Appl. Surf. Sci., 2016, 386, p. 319.
    28. 28)
      • 27. Kouhi, S.M.M., Lahouti, M., Ganjeali, A., et al: ‘Comparative effects of ZnO nanoparticles, ZnO bulk particles, and Zn+2 on Brassica napus after long-term exposure: changes in growth, biochemical compounds, antioxidant enzyme activities, and Zn bioaccumulation’, Water, Air Soil Pollut., 2015, 226, p. 364.
    29. 29)
      • 25. Haq, I.U., Mannan, A., Ahmed, I., et al: ‘Antibacterial activity and brine shrimp toxicity of Artemisia dubia extract’, Pak. J. Bot., 2012, 44, (4), pp. 14871490.
    30. 30)
      • 15. Bondarev, N., Reshetnyak, O., Nosov, A.: ‘Effects of nutrient medium composition on development of Stevia rebaudiana shoots cultivated in the roller bioreactor and their production of steviol glycosides’, Plant Sci., 2003, 165, (4), pp. 845850.
    31. 31)
      • 4. Liu, W., Greytak, A.B., Lee, J., et al: ‘Compact biocompatible quantum dots via RAFT-mediated synthesis of imidazole-based random copolymer ligand’, 2010.
    32. 32)
      • 17. Gupta, P., Sharma, S., Saxena, S.: ‘Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol’, Appl. Biochem. Biotechnol., 2015, 176, (3), pp. 863874.
    33. 33)
      • 26. Lee, S., Kim, S., Kim, S., et al: ‘Assessment of phytotoxicity of ZnO NPs on a medicinal plant, Fagopyrum esculentum’, Environ Sci. Pollut. Res. Int., 2013, 20, (2), pp. 848854.
    34. 34)
      • 20. Soufi, S., D'Urso, G., Pizza, C., et al: ‘Steviol glycosides targeted analysis in leaves of Stevia rebaudiana (Bertoni) from plants cultivated under chilling stress conditions’, Food Chem., 2016, 1, (190), pp. 572580.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0247
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0247
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address