http://iet.metastore.ingenta.com
1887

Biophytum sensitivum nanomedicine reduces cell viability and nitrite production in prostate cancer cells

Biophytum sensitivum nanomedicine reduces cell viability and nitrite production in prostate cancer cells

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Phytomedicine research received tremendous attention for novel therapeutic agent due to their safety and low cost. We assessed a novel nanoformulation of Biophytum sensitivum (BS), natural flavonoids for their improved efficacy and superior bioavailability against crude extract for prostate cancer cells (PC3). We prepared a nanomedicine of BS by nanoprecipitation method and size analysis via DLS and SEM revealed a range of 100–118 nm and surface zeta potential as −9.77 mV. FTIR was performed to evaluate functional for presence of carbonyl and aromatic rings, respectively. Human PC3 cells showed concentration at 0.5, 0.8, and 1 mg/ml dependent cytotoxicity 22, 39, and 56% for 24 h, whereas 43, 41, and 67% for 48 h of BS nanomedicine compared with crude 11, 22, and 53% for 24 h and 38, 31, and 60% for 48 h, respectively. Haemocompatibility of BS nanomedicine at the concentration of 0.5, 0.8, and 1 mg/ml did not show blood aggregation. Cellular uptake was confirmed using rhodamine-conjugated BS nanomedicine for 48 h. Interestingly, BS nanomedicine 1 mg/ml decreases the nitrite productions in PC3 cells. Collectively, BS nanomedicine has the potential anti-cancer agents with biocompatible and enhanced efficacy can be beneficial for the treatment of prostate cancer

References

    1. 1)
      • L.A. Torre , F. Bray , R.L. Siegel .
        1. Torre, L.A., Bray, F., Siegel, R.L., et al: ‘Global cancer statistics, 2012’, CA: Cancer J. Clin., 2015, 65, (2), pp. 87108.
        . CA: Cancer J. Clin. , 2 , 87 - 108
    2. 2)
      • L. Thorsen , K.S. Courneya , C. Stevinson .
        2. Thorsen, L., Courneya, K.S., Stevinson, C., et al: ‘A systematic review of physical activity in prostate cancer survivors: outcomes, prevalence, and determinants’, Support. Care Cancer, 2008, 16, (9), pp. 987997.
        . Support. Care Cancer , 9 , 987 - 997
    3. 3)
      • E.L. Richman , S.A. Kenfield , M.J. Stampfer .
        3. Richman, E.L., Kenfield, S.A., Stampfer, M.J., et al: ‘Physical activity after diagnosis and risk of prostate cancer progression: data from the cancer of the prostate strategic urologic research endeavor’, Cancer Res., 2011, 71, (11), pp. 38893895.
        . Cancer Res. , 11 , 3889 - 3895
    4. 4)
      • S.A. Kenfield , M.J. Stampfer , E. Giovannucci .
        4. Kenfield, S.A., Stampfer, M.J., Giovannucci, E., et al: ‘Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study’, J. Clin. Oncol., 2011, 29, (6), pp. 726732.
        . J. Clin. Oncol. , 6 , 726 - 732
    5. 5)
      • P. Boffetta , E. Couto , J. Wichmann .
        5. Boffetta, P., Couto, E., Wichmann, J., et al: ‘Fruit and vegetable intake and overall cancer risk in the European prospective investigation into cancer and nutrition (Epic)’, J. Natl. Cancer Inst., 2010, 102, (8), pp. 529537.
        . J. Natl. Cancer Inst. , 8 , 529 - 537
    6. 6)
      • S. Maia , M. Cardoso , P. Pinto .
        6. Maia, S., Cardoso, M., Pinto, P., et al: ‘Identification of two novel Hoxb13 germline mutations in portuguese prostate cancer patients’, PloS One, 2015, 10, (7), p. e0132728.
        . PloS One , e0132728
    7. 7)
      • R.A. Eeles , A.A. Al Olama , S. Benlloch .
        7. Eeles, R.A., Al Olama, A.A., Benlloch, S., et al: ‘Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array’, Nat. Genet., 2013, 45, (4), pp. 385391.
        . Nat. Genet. , 4 , 385 - 391
    8. 8)
      • R.J. MacInnis , G. Severi , L. Baglietto .
        8. MacInnis, R.J., Severi, G., Baglietto, L., et al: ‘Population-based estimate of prostate cancer risk for carriers of the Hoxb13 missense mutation G84e’, PloS One, 2013, 8, (2), p. e54727.
        . PloS One , e54727
    9. 9)
      • G. Chandrasekaran , E.C. Hwang , T.W. Kang .
        9. Chandrasekaran, G., Hwang, E.C., Kang, T.W., et al: ‘Computational modeling of complete Hoxb13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer’, Sci. Rep., 2017, 7, pp. 4383043848.
        . Sci. Rep. , 43830 - 43848
    10. 10)
      • H.H. Han , J.W. Park , J.C. Na .
        10. Han, H.H., Park, J.W., Na, J.C., et al: ‘Epidemiology of prostate cancer in South Korea’, Prostate Int., 2015, 3, (3), pp. 99102.
        . Prostate Int. , 3 , 99 - 102
    11. 11)
      • M.M. Center , A. Jemal , J. Lortet-Tieulent .
        11. Center, M.M., Jemal, A., Lortet-Tieulent, J., et al: ‘International variation in prostate cancer incidence and mortality rates’, Eur. Urol., 2012, 61, (6), pp. 10791092.
        . Eur. Urol. , 6 , 1079 - 1092
    12. 12)
      • J.L. Beebe-Dimmer , M. Hathcock , C. Yee .
        12. Beebe-Dimmer, J.L., Hathcock, M., Yee, C., et al: ‘The Hoxb13 G84e mutation is associated with an increased risk for prostate cancer and other malignancies’, Cancer Epidemiol. Prev. Biomark., 2015, 24, (9), pp. 13661372.
        . Cancer Epidemiol. Prev. Biomark. , 9 , 1366 - 1372
    13. 13)
      • G. Chandrasekaran , E.C. Hwang , T.W. Kang .
        13. Chandrasekaran, G., Hwang, E.C., Kang, T.W., et al: ‘In silico analysis of the deleterious Nssnp's (missense) in the homeobox domain of human Hoxb13 gene responsible for hereditary prostate cancer’, Chem. Biol. Drug Des., 2017, 90, (2), pp. 188199.
        . Chem. Biol. Drug Des. , 2 , 188 - 199
    14. 14)
      • K. Kelly , S.P. Balk .
        14. Kelly, K., Balk, S.P.: ‘Reprogramming to resist’, Science, 2017, 355, (6320), pp. 2930.
        . Science , 6320 , 29 - 30
    15. 15)
      • A. Mohan , S.V. Nair , V.-K. Lakshmanan .
        15. Mohan, A., Nair, S.V., Lakshmanan, V.-K.: ‘Polymeric nanomicelles for cancer theranostics’, Int. J. Polym. Mater. Polym. Biomater., 2017, In press.
        . Int. J. Polym. Mater. Polym. Biomater.
    16. 16)
      • O. Naksuriya , S. Okonogi , R.M. Schiffelers .
        16. Naksuriya, O., Okonogi, S., Schiffelers, R.M., et al: ‘Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment’, Biomaterials, 2014, 35, (10), pp. 33653383.
        . Biomaterials , 10 , 3365 - 3383
    17. 17)
      • S. Kumar , A.K. Pandey .
        17. Kumar, S., Pandey, A.K.: ‘Chemistry and biological activities of flavonoids: an overview’, Sci. World J., 2013, 2013, pp. 116.
        . Sci. World J. , 1 - 16
    18. 18)
      • A.M. Cherian , S.V. Nair , V.-K. Lakshmanan .
        18. Cherian, A.M., Nair, S.V., Lakshmanan, V.-K.: ‘The role of nanotechnology in prostate cancer theranostic applications’, J. Nanosci. Nanotechnol., 2014, 14, pp. 841852.
        . J. Nanosci. Nanotechnol. , 841 - 852
    19. 19)
      • A. Castro Nava , M. Cojoc , C. Peitzsch .
        19. Castro Nava, A., Cojoc, M., Peitzsch, C., et al: ‘Development of novel radiochemotherapy approaches targeting prostate tumor progenitor cells using nanohybrids’, Int. J. Cancer, 2015, 137, (10), pp. 24922503.
        . Int. J. Cancer , 10 , 2492 - 2503
    20. 20)
      • G.S. Shah , R. Nandhini , K. Snima .
        20. Shah, G.S., Nandhini, R., Snima, K., et al: ‘On the use of carbon nanotubes for cell anchoring and spreading in prostate cancer cells’, Adv. Sci. Focus, 2014, 2, (1), pp. 6266.
        . Adv. Sci. Focus , 1 , 62 - 66
    21. 21)
      • K. Snima , K. Sreelakshmi , G. Renu .
        21. Snima, K., Sreelakshmi, K., Renu, G., et al: ‘Development of activated carbon-ceria nanocomposite materials for prostate cancer therapy’, Adv. Sci. Eng. Med., 2013, 5, (11), pp. 11321136.
        . Adv. Sci. Eng. Med. , 11 , 1132 - 1136
    22. 22)
      • S.M. Axiak-Bechtel , A. Upendran , J.C. Lattimer .
        22. Axiak-Bechtel, S.M., Upendran, A., Lattimer, J.C., et al: ‘Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer’, Int. J. Nanomed., 2014, 9, p. 5001.
        . Int. J. Nanomed. , 5001
    23. 23)
      • T. Wolfe , D. Chatterjee , J. Lee .
        23. Wolfe, T., Chatterjee, D., Lee, J., et al: ‘Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo’, Nanomed. Nanotechnol. Biol. Med., 2015, 11, (5), pp. 12771283.
        . Nanomed. Nanotechnol. Biol. Med. , 5 , 1277 - 1283
    24. 24)
      • Y. Ruan , W. Yu , F. Cheng .
        24. Ruan, Y., Yu, W., Cheng, F., et al: ‘Comparison of quantum-dots-and fluoresceinisothiocyanate-based technology for detecting prostate-specific antigen expression in human prostate cancer’, IET Nanobiotechnol., 2011, 5, (2), pp. 4751.
        . IET Nanobiotechnol. , 2 , 47 - 51
    25. 25)
      • Y. Park , Y. Hong , A. Weyers .
        25. Park, Y., Hong, Y., Weyers, A., et al: ‘Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles’, IET Nanobiotechnol., 2011, 5, (3), pp. 6978.
        . IET Nanobiotechnol. , 3 , 69 - 78
    26. 26)
      • V.A. Kumar , K. Ammani , R. Jobina .
        26. Kumar, V.A., Ammani, K., Jobina, R., et al: ‘Larvicidal activity of green synthesized silver nanoparticles using Excoecaria agallocha L.(Euphorbiaceae) leaf extract against Aedes aegypti’, IET Nanobiotechnol., 2016, 10, (6), pp. 382388.
        . IET Nanobiotechnol. , 6 , 382 - 388
    27. 27)
      • C. Rodríguez-González , P. Velázquez-Villalba , P. Salas .
        27. Rodríguez-González, C., Velázquez-Villalba, P., Salas, P., et al: ‘Green synthesis of nanosilver-decorated graphene oxide sheets’, IET Nanobiotechnol., 2016, 10, (5), pp. 301307.
        . IET Nanobiotechnol. , 5 , 301 - 307
    28. 28)
      • J.A. Hema , R. Malaka , N.P. Muthukumarasamy .
        28. Hema, J.A., Malaka, R., Muthukumarasamy, N.P., et al: ‘Green synthesis of silver nanoparticles using Zea mays and exploration of its biological applications’, IET Nanobiotechnol., 2016, 10, (5), pp. 288294.
        . IET Nanobiotechnol. , 5 , 288 - 294
    29. 29)
      • B. Ahmad , F. Shireen , S. Bashir .
        29. Ahmad, B., Shireen, F., Bashir, S., et al: ‘Green Synthesis, characterisation and biological evaluation of AgNPs using Agave americana, Mentha spicata and Mangifera indica aqueous leaves extract’, IET Nanobiotechnol., 2016, 10, (5), pp. 281287.
        . IET Nanobiotechnol. , 5 , 281 - 287
    30. 30)
      • K. Govindaraju , K. Krishnamoorthy , S.A. Alsagaby .
        30. Govindaraju, K., Krishnamoorthy, K., Alsagaby, S.A., et al: ‘Green synthesis of silver nanoparticles for selective toxicity towards cancer cells’, IET Nanobiotechnol., 2015, 9, (6), pp. 325330.
        . IET Nanobiotechnol. , 6 , 325 - 330
    31. 31)
      • S. Hashemi , Z. Asrar , S. Pourseyedi .
        31. Hashemi, S., Asrar, Z., Pourseyedi, S., et al: ‘Green synthesis of ZnO nanoparticles by olive (Olea europaea)’, IET Nanobiotechnol., 2016, 10, (6), pp. 400404.
        . IET Nanobiotechnol. , 6 , 400 - 404
    32. 32)
      • V.-K. Lakshmanan .
        32. Lakshmanan, V.-K.: ‘Therapeutic efficacy of nanomedicines for prostate cancer: an update’, Invest. Clin. Urol., 2016, 57, (1), pp. 2129.
        . Invest. Clin. Urol. , 1 , 21 - 29
    33. 33)
      • S. Uthaman , K. Snima , M. Annapoorna .
        33. Uthaman, S., Snima, K., Annapoorna, M., et al: ‘Novel boswellic acids nanoparticles induces cell death in prostate cancer cells’, J. Nat. Prod., 2012, 5, pp. 100108.
        . J. Nat. Prod. , 100 - 108
    34. 34)
      • C.D. Nandan , P. Reshmi , S. Uthaman .
        34. Nandan, C.D., Reshmi, P., Uthaman, S., et al: ‘Therapeutic properties of boswellic acid nanoparticles in prostate tumor-bearing Balb/C mice model’, J. Nanopharm. Drug Deliv., 2013, 1, (1), pp. 3037.
        . J. Nanopharm. Drug Deliv. , 1 , 30 - 37
    35. 35)
      • T. Reshmi , A.S. Gaurav , K.S. Snima .
        35. Reshmi, T., Gaurav, A.S., Snima, K.S., et al: ‘Enhanced efficacy of Phyllanthus niruri nanoparticles for prostate cancer therapy’, J. Bionanosci., 2014, 8, p. 101.
        . J. Bionanosci. , 101
    36. 36)
      • S. Karuppath , K. Snima , K. Ravindranath .
        36. Karuppath, S., Snima, K., Ravindranath, K., et al: ‘Anti-proliferative effect of Tinospora cardifolia nanoparticles in prostate cancer cells’, J. Bionanosci., 2016, 10, (2), pp. 127133.
        . J. Bionanosci. , 2 , 127 - 133
    37. 37)
      • K. Snima , P. Arunkumar , R. Jayakumar .
        37. Snima, K., Arunkumar, P., Jayakumar, R., et al: ‘Silymarin encapsulated poly (D, L-lactic-Co-glycolic acid) nanoparticles: a prospective candidate for prostate cancer therapy’, J. Biomed. Nanotechnol., 2014, 10, (4), pp. 559570.
        . J. Biomed. Nanotechnol. , 4 , 559 - 570
    38. 38)
      • A.M. Cherian , K. Snima , C.R. Kamath .
        38. Cherian, A.M., Snima, K., Kamath, C.R., et al: ‘Effect of Baliospermum montanum nanomedicine apoptosis induction and anti-migration of prostate cancer cells’, Biomed. Pharmacother., 2015, 71, pp. 201209.
        . Biomed. Pharmacother. , 201 - 209
    39. 39)
      • H.A. Nair , K.S. Snima , R.C. Kamath .
        39. Nair, H.A., Snima, K.S., Kamath, R.C., et al: ‘Plumbagin nanoparticles induce dose and Ph dependent toxicity on prostate cancer cells’, Curr. Drug Deliv., 2015, 12, (6), pp. 709716.
        . Curr. Drug Deliv. , 6 , 709 - 716
    40. 40)
      • A. Mohan , S.V. Nair , V.-K. Lakshmanan .
        40. Mohan, A., Nair, S.V., Lakshmanan, V.-K.: ‘Leucas aspera nanomedicine shows superior toxicity and cell migration retarded in prostate cancer cells’, Appl. Biochem. Biotechnol., 2017, 181, (4), pp. 13881400.
        . Appl. Biochem. Biotechnol. , 4 , 1388 - 1400
    41. 41)
      • C. Guruvayoorappan , G. Kuttan .
        41. Guruvayoorappan, C., Kuttan, G.: ‘Immunomodulatory and antitumor activity of Biophytum sensitivum extract’, Asian Pac. J. Cancer Prev., 2007, 8, (1), p. 27.
        . Asian Pac. J. Cancer Prev. , 1 , 27
    42. 42)
      • K. Sakthivel , C. Guruvayoorappan .
        42. Sakthivel, K., Guruvayoorappan, C.: ‘Biophytum sensitivum: ancient medicine, modern targets’, J. Adv. Pharm. Technol. Res., 2012, 3, (2), p. 83.
        . J. Adv. Pharm. Technol. Res. , 2 , 83
    43. 43)
      • R. Surenya , K. Snima , V. Shantikumar .
        43. Surenya, R., Snima, K., Shantikumar, V., et al: ‘Assessment of poly (vinyl alcohol) coated flutamide nanoparticulates and their efficacy on prostate cancer cells’, Curr. Drug Deliv., 2016, In press.
        . Curr. Drug Deliv.
    44. 44)
      • P. Kalita , B.K. Tapan , T.K. Pal .
        44. Kalita, P., Tapan, B.K., Pal, T.K., et al: ‘Estimation of total flavonoids content (TFC) and anti-oxidant activities of methanolic whole plant extract of Biophytum sensitivum linn’, J. Drug Deliv. Ther., 2013, 3, (4), pp. 3337.
        . J. Drug Deliv. Ther. , 4 , 33 - 37
    45. 45)
      • R. Augustine , A. Augustine , N. Kalarikkal .
        45. Augustine, R., Augustine, A., Kalarikkal, N., et al: ‘Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings’, Prog. Biomater., 2016, 5, (3–4), pp. 223235.
        . Prog. Biomater. , 223 - 235
    46. 46)
      • C. Guruvayoorappan , G. Kuttan .
        46. Guruvayoorappan, C., Kuttan, G.: ‘Amentoflavone stimulates apoptosis in B16F-10 melanoma cells by regulating Bcl-2, P53 as well as caspase-3 genes and regulates the nitric oxide as well as proinflammatory cytokine production in B16F-10 melanoma cells, tumor associated macrophages and peritoneal macrophages’, J. Exp. Ther. Oncol., 2008, 7, (3), pp. 207218.
        . J. Exp. Ther. Oncol. , 3 , 207 - 218
    47. 47)
      • K. Snima , R. Jayakumar , A. Unnikrishnan .
        47. Snima, K., Jayakumar, R., Unnikrishnan, A., et al: ‘O-carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells’, Carbohydr. Polym., 2012, 89, (3), pp. 10031007.
        . Carbohydr. Polym. , 3 , 1003 - 1007
    48. 48)
      • F. Martínez-Gutierrez , E.P. Thi , J.M. Silverman .
        48. Martínez-Gutierrez, F., Thi, E.P., Silverman, J.M., et al: ‘Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles’, Nanomed. Nanotechnol. Biol. Med., 2012, 8, (3), pp. 328336.
        . Nanomed. Nanotechnol. Biol. Med. , 3 , 328 - 336
    49. 49)
      • M. Choimet , K. Hyoung-Mi , O. Jae-Min .
        49. Choimet, M., Hyoung-Mi, K., Jae-Min, O., et al: ‘Nanomedicine: interaction of biomimetic apatite colloidal nanoparticles with human blood components’, Colloids Surf. B Biointerfaces, 2016, 145, pp. 8794.
        . Colloids Surf. B Biointerfaces , 87 - 94
    50. 50)
      • P. Aggarwal , J.B. Hall , C.B. McLeland .
        50. Aggarwal, P., Hall, J.B., McLeland, C.B., et al: ‘Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy’, Adv. Drug Deliv. Rev., 2009, 61, (6), pp. 428437.
        . Adv. Drug Deliv. Rev. , 6 , 428 - 437
    51. 51)
      • L. Mu , S. Feng .
        51. Mu, L., Feng, S.: ‘A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS’, J. Control. Release, 2003, 86, (1), pp. 3348.
        . J. Control. Release , 1 , 33 - 48
    52. 52)
      • K.Y. Win , S.-S. Feng .
        52. Win, K.Y., Feng, S.-S.: ‘Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs’, Biomaterials, 2005, 26, (15), pp. 27132722.
        . Biomaterials , 15 , 2713 - 2722
    53. 53)
      • A.E. Norrish , R.T. Jackson , S.J. Sharpe .
        53. Norrish, A.E., Jackson, R.T., Sharpe, S.J., et al: ‘Prostate cancer and dietary carotenoids’, Am. J. Epidemiol., 2000, 151, (2), pp. 119123.
        . Am. J. Epidemiol. , 2 , 119 - 123
    54. 54)
      • E. Giovannucci .
        54. Giovannucci, E.: ‘Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature’, J. Natl. Cancer Inst., 1999, 91, (4), pp. 317331.
        . J. Natl. Cancer Inst. , 4 , 317 - 331
    55. 55)
      • T.M. Vance , J. Su , E.T. Fontham .
        55. Vance, T.M., Su, J., Fontham, E.T., et al: ‘Dietary antioxidants and prostate cancer: a review’, Nutr. Cancer, 2013, 65, (6), pp. 793801.
        . Nutr. Cancer , 6 , 793 - 801
    56. 56)
      • C. Guruvayoorappan , A. Afira , G. Kuttan .
        56. Guruvayoorappan, C., Afira, A., Kuttan, G.: ‘Antioxidant potential of Biophytum sensitivum extract in vitro and in vivo’, J. Basic Clin. Physiol. Pharmacol., 2006, 17, (4), pp. 255268.
        . J. Basic Clin. Physiol. Pharmacol. , 4 , 255 - 268
    57. 57)
      • A.C. Bharati , A.N. Sahu .
        57. Bharati, A.C., Sahu, A.N.: ‘Ethnobotany, phytochemistry and pharmacology of Biophytum sensitivum Dc’, Pharmacognosy Rev., 2012, 6, (11), p. 68.
        . Pharmacognosy Rev. , 11 , 68
    58. 58)
      • C. Guruvayoorappan , G. Kuttan .
        58. Guruvayoorappan, C., Kuttan, G.: ‘Methanol extract of Biophytum sensitivum alters the cytokine profile and inhibits iNOS and COX-2 expression in LPS/Con a stimulated macrophages’, Drug Chem. Toxicol., 2008, 31, (1), pp. 175188.
        . Drug Chem. Toxicol. , 1 , 175 - 188
    59. 59)
      • C. Guruvayoorappan , G. Kuttan .
        59. Guruvayoorappan, C., Kuttan, G.: ‘Apoptotic effect of Biophytum sensitivum on B16F-10 cells and its regulatory effects on nitric oxide and cytokine production on tumor-associated macrophages’, Integr. Cancer Ther., 2007, 6, (4), pp. 373380.
        . Integr. Cancer Ther. , 4 , 373 - 380
    60. 60)
      • V. Cardile , C. Scifo , A. Russo .
        60. Cardile, V., Scifo, C., Russo, A., et al: ‘Involvement of Hsp70 in resveratrol-induced apoptosis of human prostate cancer’, Anticancer Res., 2002, 23, (6C), pp. 49214926.
        . Anticancer Res. , 4921 - 4926
    61. 61)
      • E. Markoutsa , P. Xu .
        61. Markoutsa, E., Xu, P.: ‘Redox potential sensitive N-acetyl cysteine-prodrug nanoparticles inhibit the activation of microglia and improve neuronal survival’, Mol. Pharm., 2017, 14, (5), pp. 15911600.
        . Mol. Pharm. , 5 , 1591 - 1600
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0235
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0235
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address