http://iet.metastore.ingenta.com
1887

Biophytum sensitivum nanomedicine reduces cell viability and nitrite production in prostate cancer cells

Biophytum sensitivum nanomedicine reduces cell viability and nitrite production in prostate cancer cells

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Phytomedicine research received tremendous attention for novel therapeutic agent due to their safety and low cost. We assessed a novel nanoformulation of Biophytum sensitivum (BS), natural flavonoids for their improved efficacy and superior bioavailability against crude extract for prostate cancer cells (PC3). We prepared a nanomedicine of BS by nanoprecipitation method and size analysis via DLS and SEM revealed a range of 100–118 nm and surface zeta potential as −9.77 mV. FTIR was performed to evaluate functional for presence of carbonyl and aromatic rings, respectively. Human PC3 cells showed concentration at 0.5, 0.8, and 1 mg/ml dependent cytotoxicity 22, 39, and 56% for 24 h, whereas 43, 41, and 67% for 48 h of BS nanomedicine compared with crude 11, 22, and 53% for 24 h and 38, 31, and 60% for 48 h, respectively. Haemocompatibility of BS nanomedicine at the concentration of 0.5, 0.8, and 1 mg/ml did not show blood aggregation. Cellular uptake was confirmed using rhodamine-conjugated BS nanomedicine for 48 h. Interestingly, BS nanomedicine 1 mg/ml decreases the nitrite productions in PC3 cells. Collectively, BS nanomedicine has the potential anti-cancer agents with biocompatible and enhanced efficacy can be beneficial for the treatment of prostate cancer

References

    1. 1)
      • 1. Torre, L.A., Bray, F., Siegel, R.L., et al: ‘Global cancer statistics, 2012’, CA: Cancer J. Clin., 2015, 65, (2), pp. 87108.
    2. 2)
      • 2. Thorsen, L., Courneya, K.S., Stevinson, C., et al: ‘A systematic review of physical activity in prostate cancer survivors: outcomes, prevalence, and determinants’, Support. Care Cancer, 2008, 16, (9), pp. 987997.
    3. 3)
      • 3. Richman, E.L., Kenfield, S.A., Stampfer, M.J., et al: ‘Physical activity after diagnosis and risk of prostate cancer progression: data from the cancer of the prostate strategic urologic research endeavor’, Cancer Res., 2011, 71, (11), pp. 38893895.
    4. 4)
      • 4. Kenfield, S.A., Stampfer, M.J., Giovannucci, E., et al: ‘Physical activity and survival after prostate cancer diagnosis in the health professionals follow-up study’, J. Clin. Oncol., 2011, 29, (6), pp. 726732.
    5. 5)
      • 5. Boffetta, P., Couto, E., Wichmann, J., et al: ‘Fruit and vegetable intake and overall cancer risk in the European prospective investigation into cancer and nutrition (Epic)’, J. Natl. Cancer Inst., 2010, 102, (8), pp. 529537.
    6. 6)
      • 6. Maia, S., Cardoso, M., Pinto, P., et al: ‘Identification of two novel Hoxb13 germline mutations in portuguese prostate cancer patients’, PloS One, 2015, 10, (7), p. e0132728.
    7. 7)
      • 7. Eeles, R.A., Al Olama, A.A., Benlloch, S., et al: ‘Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array’, Nat. Genet., 2013, 45, (4), pp. 385391.
    8. 8)
      • 8. MacInnis, R.J., Severi, G., Baglietto, L., et al: ‘Population-based estimate of prostate cancer risk for carriers of the Hoxb13 missense mutation G84e’, PloS One, 2013, 8, (2), p. e54727.
    9. 9)
      • 9. Chandrasekaran, G., Hwang, E.C., Kang, T.W., et al: ‘Computational modeling of complete Hoxb13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer’, Sci. Rep., 2017, 7, pp. 4383043848.
    10. 10)
      • 10. Han, H.H., Park, J.W., Na, J.C., et al: ‘Epidemiology of prostate cancer in South Korea’, Prostate Int., 2015, 3, (3), pp. 99102.
    11. 11)
      • 11. Center, M.M., Jemal, A., Lortet-Tieulent, J., et al: ‘International variation in prostate cancer incidence and mortality rates’, Eur. Urol., 2012, 61, (6), pp. 10791092.
    12. 12)
      • 12. Beebe-Dimmer, J.L., Hathcock, M., Yee, C., et al: ‘The Hoxb13 G84e mutation is associated with an increased risk for prostate cancer and other malignancies’, Cancer Epidemiol. Prev. Biomark., 2015, 24, (9), pp. 13661372.
    13. 13)
      • 13. Chandrasekaran, G., Hwang, E.C., Kang, T.W., et al: ‘In silico analysis of the deleterious Nssnp's (missense) in the homeobox domain of human Hoxb13 gene responsible for hereditary prostate cancer’, Chem. Biol. Drug Des., 2017, 90, (2), pp. 188199.
    14. 14)
      • 14. Kelly, K., Balk, S.P.: ‘Reprogramming to resist’, Science, 2017, 355, (6320), pp. 2930.
    15. 15)
      • 15. Mohan, A., Nair, S.V., Lakshmanan, V.-K.: ‘Polymeric nanomicelles for cancer theranostics’, Int. J. Polym. Mater. Polym. Biomater., 2017, In press.
    16. 16)
      • 16. Naksuriya, O., Okonogi, S., Schiffelers, R.M., et al: ‘Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment’, Biomaterials, 2014, 35, (10), pp. 33653383.
    17. 17)
      • 17. Kumar, S., Pandey, A.K.: ‘Chemistry and biological activities of flavonoids: an overview’, Sci. World J., 2013, 2013, pp. 116.
    18. 18)
      • 18. Cherian, A.M., Nair, S.V., Lakshmanan, V.-K.: ‘The role of nanotechnology in prostate cancer theranostic applications’, J. Nanosci. Nanotechnol., 2014, 14, pp. 841852.
    19. 19)
      • 19. Castro Nava, A., Cojoc, M., Peitzsch, C., et al: ‘Development of novel radiochemotherapy approaches targeting prostate tumor progenitor cells using nanohybrids’, Int. J. Cancer, 2015, 137, (10), pp. 24922503.
    20. 20)
      • 20. Shah, G.S., Nandhini, R., Snima, K., et al: ‘On the use of carbon nanotubes for cell anchoring and spreading in prostate cancer cells’, Adv. Sci. Focus, 2014, 2, (1), pp. 6266.
    21. 21)
      • 21. Snima, K., Sreelakshmi, K., Renu, G., et al: ‘Development of activated carbon-ceria nanocomposite materials for prostate cancer therapy’, Adv. Sci. Eng. Med., 2013, 5, (11), pp. 11321136.
    22. 22)
      • 22. Axiak-Bechtel, S.M., Upendran, A., Lattimer, J.C., et al: ‘Gum arabic-coated radioactive gold nanoparticles cause no short-term local or systemic toxicity in the clinically relevant canine model of prostate cancer’, Int. J. Nanomed., 2014, 9, p. 5001.
    23. 23)
      • 23. Wolfe, T., Chatterjee, D., Lee, J., et al: ‘Targeted gold nanoparticles enhance sensitization of prostate tumors to megavoltage radiation therapy in vivo’, Nanomed. Nanotechnol. Biol. Med., 2015, 11, (5), pp. 12771283.
    24. 24)
      • 24. Ruan, Y., Yu, W., Cheng, F., et al: ‘Comparison of quantum-dots-and fluoresceinisothiocyanate-based technology for detecting prostate-specific antigen expression in human prostate cancer’, IET Nanobiotechnol., 2011, 5, (2), pp. 4751.
    25. 25)
      • 25. Park, Y., Hong, Y., Weyers, A., et al: ‘Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles’, IET Nanobiotechnol., 2011, 5, (3), pp. 6978.
    26. 26)
      • 26. Kumar, V.A., Ammani, K., Jobina, R., et al: ‘Larvicidal activity of green synthesized silver nanoparticles using Excoecaria agallocha L.(Euphorbiaceae) leaf extract against Aedes aegypti’, IET Nanobiotechnol., 2016, 10, (6), pp. 382388.
    27. 27)
      • 27. Rodríguez-González, C., Velázquez-Villalba, P., Salas, P., et al: ‘Green synthesis of nanosilver-decorated graphene oxide sheets’, IET Nanobiotechnol., 2016, 10, (5), pp. 301307.
    28. 28)
      • 28. Hema, J.A., Malaka, R., Muthukumarasamy, N.P., et al: ‘Green synthesis of silver nanoparticles using Zea mays and exploration of its biological applications’, IET Nanobiotechnol., 2016, 10, (5), pp. 288294.
    29. 29)
      • 29. Ahmad, B., Shireen, F., Bashir, S., et al: ‘Green Synthesis, characterisation and biological evaluation of AgNPs using Agave americana, Mentha spicata and Mangifera indica aqueous leaves extract’, IET Nanobiotechnol., 2016, 10, (5), pp. 281287.
    30. 30)
      • 30. Govindaraju, K., Krishnamoorthy, K., Alsagaby, S.A., et al: ‘Green synthesis of silver nanoparticles for selective toxicity towards cancer cells’, IET Nanobiotechnol., 2015, 9, (6), pp. 325330.
    31. 31)
      • 31. Hashemi, S., Asrar, Z., Pourseyedi, S., et al: ‘Green synthesis of ZnO nanoparticles by olive (Olea europaea)’, IET Nanobiotechnol., 2016, 10, (6), pp. 400404.
    32. 32)
      • 32. Lakshmanan, V.-K.: ‘Therapeutic efficacy of nanomedicines for prostate cancer: an update’, Invest. Clin. Urol., 2016, 57, (1), pp. 2129.
    33. 33)
      • 33. Uthaman, S., Snima, K., Annapoorna, M., et al: ‘Novel boswellic acids nanoparticles induces cell death in prostate cancer cells’, J. Nat. Prod., 2012, 5, pp. 100108.
    34. 34)
      • 34. Nandan, C.D., Reshmi, P., Uthaman, S., et al: ‘Therapeutic properties of boswellic acid nanoparticles in prostate tumor-bearing Balb/C mice model’, J. Nanopharm. Drug Deliv., 2013, 1, (1), pp. 3037.
    35. 35)
      • 35. Reshmi, T., Gaurav, A.S., Snima, K.S., et al: ‘Enhanced efficacy of Phyllanthus niruri nanoparticles for prostate cancer therapy’, J. Bionanosci., 2014, 8, p. 101.
    36. 36)
      • 36. Karuppath, S., Snima, K., Ravindranath, K., et al: ‘Anti-proliferative effect of Tinospora cardifolia nanoparticles in prostate cancer cells’, J. Bionanosci., 2016, 10, (2), pp. 127133.
    37. 37)
      • 37. Snima, K., Arunkumar, P., Jayakumar, R., et al: ‘Silymarin encapsulated poly (D, L-lactic-Co-glycolic acid) nanoparticles: a prospective candidate for prostate cancer therapy’, J. Biomed. Nanotechnol., 2014, 10, (4), pp. 559570.
    38. 38)
      • 38. Cherian, A.M., Snima, K., Kamath, C.R., et al: ‘Effect of Baliospermum montanum nanomedicine apoptosis induction and anti-migration of prostate cancer cells’, Biomed. Pharmacother., 2015, 71, pp. 201209.
    39. 39)
      • 39. Nair, H.A., Snima, K.S., Kamath, R.C., et al: ‘Plumbagin nanoparticles induce dose and Ph dependent toxicity on prostate cancer cells’, Curr. Drug Deliv., 2015, 12, (6), pp. 709716.
    40. 40)
      • 40. Mohan, A., Nair, S.V., Lakshmanan, V.-K.: ‘Leucas aspera nanomedicine shows superior toxicity and cell migration retarded in prostate cancer cells’, Appl. Biochem. Biotechnol., 2017, 181, (4), pp. 13881400.
    41. 41)
      • 41. Guruvayoorappan, C., Kuttan, G.: ‘Immunomodulatory and antitumor activity of Biophytum sensitivum extract’, Asian Pac. J. Cancer Prev., 2007, 8, (1), p. 27.
    42. 42)
      • 42. Sakthivel, K., Guruvayoorappan, C.: ‘Biophytum sensitivum: ancient medicine, modern targets’, J. Adv. Pharm. Technol. Res., 2012, 3, (2), p. 83.
    43. 43)
      • 43. Surenya, R., Snima, K., Shantikumar, V., et al: ‘Assessment of poly (vinyl alcohol) coated flutamide nanoparticulates and their efficacy on prostate cancer cells’, Curr. Drug Deliv., 2016, In press.
    44. 44)
      • 44. Kalita, P., Tapan, B.K., Pal, T.K., et al: ‘Estimation of total flavonoids content (TFC) and anti-oxidant activities of methanolic whole plant extract of Biophytum sensitivum linn’, J. Drug Deliv. Ther., 2013, 3, (4), pp. 3337.
    45. 45)
      • 45. Augustine, R., Augustine, A., Kalarikkal, N., et al: ‘Fabrication and characterization of biosilver nanoparticles loaded calcium pectinate nano-micro dual-porous antibacterial wound dressings’, Prog. Biomater., 2016, 5, (3–4), pp. 223235.
    46. 46)
      • 46. Guruvayoorappan, C., Kuttan, G.: ‘Amentoflavone stimulates apoptosis in B16F-10 melanoma cells by regulating Bcl-2, P53 as well as caspase-3 genes and regulates the nitric oxide as well as proinflammatory cytokine production in B16F-10 melanoma cells, tumor associated macrophages and peritoneal macrophages’, J. Exp. Ther. Oncol., 2008, 7, (3), pp. 207218.
    47. 47)
      • 47. Snima, K., Jayakumar, R., Unnikrishnan, A., et al: ‘O-carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells’, Carbohydr. Polym., 2012, 89, (3), pp. 10031007.
    48. 48)
      • 48. Martínez-Gutierrez, F., Thi, E.P., Silverman, J.M., et al: ‘Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles’, Nanomed. Nanotechnol. Biol. Med., 2012, 8, (3), pp. 328336.
    49. 49)
      • 49. Choimet, M., Hyoung-Mi, K., Jae-Min, O., et al: ‘Nanomedicine: interaction of biomimetic apatite colloidal nanoparticles with human blood components’, Colloids Surf. B Biointerfaces, 2016, 145, pp. 8794.
    50. 50)
      • 50. Aggarwal, P., Hall, J.B., McLeland, C.B., et al: ‘Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy’, Adv. Drug Deliv. Rev., 2009, 61, (6), pp. 428437.
    51. 51)
      • 51. Mu, L., Feng, S.: ‘A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS’, J. Control. Release, 2003, 86, (1), pp. 3348.
    52. 52)
      • 52. Win, K.Y., Feng, S.-S.: ‘Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs’, Biomaterials, 2005, 26, (15), pp. 27132722.
    53. 53)
      • 53. Norrish, A.E., Jackson, R.T., Sharpe, S.J., et al: ‘Prostate cancer and dietary carotenoids’, Am. J. Epidemiol., 2000, 151, (2), pp. 119123.
    54. 54)
      • 54. Giovannucci, E.: ‘Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature’, J. Natl. Cancer Inst., 1999, 91, (4), pp. 317331.
    55. 55)
      • 55. Vance, T.M., Su, J., Fontham, E.T., et al: ‘Dietary antioxidants and prostate cancer: a review’, Nutr. Cancer, 2013, 65, (6), pp. 793801.
    56. 56)
      • 56. Guruvayoorappan, C., Afira, A., Kuttan, G.: ‘Antioxidant potential of Biophytum sensitivum extract in vitro and in vivo’, J. Basic Clin. Physiol. Pharmacol., 2006, 17, (4), pp. 255268.
    57. 57)
      • 57. Bharati, A.C., Sahu, A.N.: ‘Ethnobotany, phytochemistry and pharmacology of Biophytum sensitivum Dc’, Pharmacognosy Rev., 2012, 6, (11), p. 68.
    58. 58)
      • 58. Guruvayoorappan, C., Kuttan, G.: ‘Methanol extract of Biophytum sensitivum alters the cytokine profile and inhibits iNOS and COX-2 expression in LPS/Con a stimulated macrophages’, Drug Chem. Toxicol., 2008, 31, (1), pp. 175188.
    59. 59)
      • 59. Guruvayoorappan, C., Kuttan, G.: ‘Apoptotic effect of Biophytum sensitivum on B16F-10 cells and its regulatory effects on nitric oxide and cytokine production on tumor-associated macrophages’, Integr. Cancer Ther., 2007, 6, (4), pp. 373380.
    60. 60)
      • 60. Cardile, V., Scifo, C., Russo, A., et al: ‘Involvement of Hsp70 in resveratrol-induced apoptosis of human prostate cancer’, Anticancer Res., 2002, 23, (6C), pp. 49214926.
    61. 61)
      • 61. Markoutsa, E., Xu, P.: ‘Redox potential sensitive N-acetyl cysteine-prodrug nanoparticles inhibit the activation of microglia and improve neuronal survival’, Mol. Pharm., 2017, 14, (5), pp. 15911600.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0235
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0235
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address