access icon free Synthesis of biotin-targeted chitosan/poly (methyl vinyl ether-alt-maleic acid) copolymeric micelles for delivery of doxorubicin

Biotinylated chitosan/poly(methyl vinyl ether-alt-maleic acid) (PMVEMA) copolymer was synthesised by an amide reaction in two steps. Structural characterisation was performed using 1HNMR and Fourier transform infra-red (FTIR) spectra. Critical micelle concentration (CMC) of the copolymer was determined by pyrene as a fluorescent probe. Doxorubicin (DOX) was loaded in the micelles by the direct dissolution method. The effects of different variables including type of copolymer, copolymer concentration, stirring rate and stirring time were studied on the physicochemical properties of the micelles including: particle size, zeta potential, release efficiency and loading efficiency of nanoparticles using an irregular factorial design. The in vitro cytotoxicity of DOX-loaded biotin-targeted micelles was studied in HepG2 cells which over express biotin receptors by 3, 5-[dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide assay. The successful synthesis of the biotinylated copolymer of chitosan/PMVEMA was confirmed by FTIR and 1HNMR. The optimised micelles showed the CMC of 33 μg/ml, particle size of 247 ± 2 nm, zeta potential of +9.46 mV, polydispersity index of 0.22, drug-loading efficiency of 71% and release efficiency of 84.5 ± 1.6%. The synthesised copolymer was not cytotoxic. The cytotoxicity of DOX-loaded in targeted micelles on HepG2 cell line was about 2.2-fold compared with free drug.

Inspec keywords: drugs; drug delivery systems; polymer blends; toxicology; dissolving; electrokinetic effects; Fourier transform infrared spectra; biomedical materials; fluorescence; particle size; spectrochemical analysis; cellular biophysics

Other keywords: structural characterisation; DOX-loaded biotin-targeted micelles; direct dissolution method; doxorubicin delivery; voltage 9.46 mV; drug-loading efficiency; physicochemical properties; amide reaction; in vitro cytotoxicity; HepG2 cell line; irregular factorial design; polydispersity index; zeta potential; 1HNMR spectra; biotin-targeted chitosan-poly (methyl vinyl ether-alt-maleic acid) copolymeric micelles; particle size; fluorescent probe; 3, 5-[dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide assay; nanoparticles; pyrene; Fourier transform infrared spectra

Subjects: Electromagnetic radiation spectrometry (chemical analysis); Biomedical materials; Electrochemistry and electrophoresis; Cellular biophysics; Patient care and treatment

References

    1. 1)
      • 31. Mittal, G., Sahana, D.K., Bhardwaj, V., et al: ‘Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo’, J. Control. Release, 2007, 119, (1), pp. 7785.
    2. 2)
      • 8. Saraswathy, M., Knight, G.T., Pilla, S., et al: ‘Multifunctional drug nanocarriers formed by cRGD-conjugated βCD-PAMAM-PEG for targeted cancer therapy’, Colloids Surf. B, Biointerfaces, 2015, 126, (9), pp. 590597.
    3. 3)
      • 24. Chourasia, M.K., Jain, S.K.: ‘Design and development of multiparticulate system for targeted drug delivery to colon’, Drug Deliv., 2004, 11, (3), pp. 201207.
    4. 4)
      • 6. Taymouri, S., Varshosaz, J.: ‘The recent progresses on the improved therapy of melanoma by novel drug delivery systems’, Curr. Drug Targets, 2014, 15, (9), pp. 829842.
    5. 5)
      • 30. Alex, R., Bodmeier, R.: ‘Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. Effect of process and formulation variables on drug entrapment’, J. Microencapsul., 1990, 7, (3), pp. 347355.
    6. 6)
      • 14. Tan, C., Wang, Y., Fan, W.: ‘Exploring polymeric micelles for improved delivery of anticancer agents: recent developments in preclinical studies’, Pharmaceutics, 2013, 5, pp. 201219.
    7. 7)
      • 19. Chen, M., Liu, Y., Yang, W., et al: ‘Preparation and characterization of self-assembled nanoparticles of 6-O-cholesterol-modified chitosan for drug delivery’, Carbohydr. Polym., 2011, 84, pp. 12441251.
    8. 8)
      • 1. Davis, G.L., Dempster, J., Meler, J.D., et al: ‘Hepatocellular carcinoma: management of an increasingly common problem’, Proc. Baylor Univ. Med. Cent., 2008, 21, (3), pp. 266280.
    9. 9)
      • 3. Subedi, R.K., Kang, K.W., Choi, H.K.: ‘Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin’, Eur. J. Pharm. Sci., 2009, 37, (3–4), pp. 508513.
    10. 10)
      • 10. Shen, Z., Wei, W., Tanaka, H., et al: ‘A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy’, Pharmacol. Res., 2011, 64, (4), pp. 410419.
    11. 11)
      • 11. Tian, X., Yin, H., Zhang, S., et al: ‘Bufalin loaded biotinylated chitosan nanoparticles: an efficient drug delivery system for targeted chemotherapy against breast carcinoma’, Eur. J. Pharm. Biopharm., 2014, 87, (3), pp. 445453.
    12. 12)
      • 18. Wang, Y.S., Liu, L.R., Jiang, Q., et al: ‘Self-aggregated nanoparticles of cholesterol-modified chitosan conjugate as a novel carrier of epirubicin’, Eur. Polym. J., 2007, 43, pp. 4351.
    13. 13)
      • 29. Gan, Q., Wang, T.: ‘Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release’, Colloids. Surf. B, Biointerfaces, 2007, 59, (1), pp. 2434.
    14. 14)
      • 28. Nayebsadrian, M., Varshosaz, J., Hassanzadeh, F., et al: ‘Screening the most effective variables on physical properties of folate-targeted dextran/retinoic acid micelles by Taguchi design’, J. Nanomater., 2012, (3), pp. 526534.
    15. 15)
      • 12. Lavasanifar, A., Samuel, J., Kwon, G.S.: ‘Poly(ethylene oxide)-blockpoly(L-amino acid) micelles for drug delivery’, Adv. Drug Deliv. Rev., 2002, 54, pp. 169190.
    16. 16)
      • 21. Yoncheva, K., Lizarraga, E., Irache, J.M.: ‘Pegylated nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride): preparation and evaluation of their bioadhesive properties’, Eur. J. Pharm. Sci., 2005, 24, (5), pp. 411419.
    17. 17)
      • 9. Dixit, S., Novak, T., Miller, K., et al: ‘Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors’, Nanoscale, 2015, 7, (5), pp. 17821790.
    18. 18)
      • 25. Mulik, R., Mahadik, K., Paradkar, A.: ‘Development of curcuminoids loaded poly(butyl) cyanoacrylate nanoparticles: physicochemical characterization and stability study’, Eur. J. Pharm. Sci., 2009, 37, (3–4), pp. 395404.
    19. 19)
      • 23. Varshosaz, J., Hassanzadeh, F., Sadeghi-Aliabadi, H., et al: ‘uptake of etoposide in ct-26 cells of colorectal cancer using folate targeted dextran stearate polymeric micelles’, BioMed. Res. Int., 2014, pp. 111.
    20. 20)
      • 22. Bu, L., Gan, L.C., Guo, X.Q., et al: ‘Trans-resveratrol loaded chitosan nanoparticles modified with biotin and avidin to target hepatic carcinoma’, Int. J. Pharm., 2013, 452, (1–2), pp. 355362.
    21. 21)
      • 27. Zhang, X., Zhang, H., Wu, Z., et al: ‘Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles’, Eur. J. Pharm. Biopharm., 2008, 68, (3), pp. 526534.
    22. 22)
      • 4. Qi, J., Yao, P., He, F., et al: ‘Nanoparticles with dextran/chitosan shell and BSA/chitosan core – doxorubicin loading and delivery’, Int. J. Pharm., 2010, 393, (1–2), pp. 176184.
    23. 23)
      • 7. Li, Y., Zhou, Y., De, B., et al: ‘Folate-modified pluronic-polyethylenimine and cholic acid polyion complex micelles as targeted drug delivery system for paclitaxel’, J. Microencapsul., 2014, 31, (8), pp. 805814.
    24. 24)
      • 32. Nishioka, Y., Kyotani, S., Okamura, M., et al: ‘Release characteristics of cisplatin chitosan microspheres and effect of containing chitin’, Chem. Pharm. Bull., 1990, 38, (10), pp. 28712873.
    25. 25)
      • 2. Guhagarkar, S.A., Gaikwad, R.V., Samad, A., et al: ‘Polyethylene sebacate-doxorubicin nanoparticles for hepatic targeting’, Int. J. Pharm., 2010, 401, (1–2), pp. 113122.
    26. 26)
      • 13. Owen, S.C., Chan, D.P., Shoichet, M.S.: ‘Polymeric micelle stability’, Nano Today, 2012, 7, pp. 5365.
    27. 27)
      • 26. Varshosaz, J., Hassanzadeh, F., Sadeghi-Aliabadi, H., et al: ‘Synthesis of Pluronic® F127-poly (methyl vinyl ether-alt-maleic acid) copolymer and production of its micelles for doxorubicin delivery in breast cancer’, Chem. Eng. J., 2014, 240, pp. 133146.
    28. 28)
      • 17. Xu, Y., Wen, Z., Xu, Z.: ‘Chitosan nanoparticles inhibit the growth of human hepatocellular carcinoma xenografts through an antiangiogenic mechanism’, Anticancer Res., 2009, 29, (12), pp. 51035109.
    29. 29)
      • 20. Shi, L., Tang, C., Yin, C.: ‘Glycyrrhizin-modified O-carboxymethyl chitosan nanoparticles as drug vehicles targeting hepatocellular carcinoma’, Biomaterials, 2012, 33, (30), pp. 75947604.
    30. 30)
      • 16. Nishiyama, N., Kataoka, K.: ‘Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery’, Pharmacol. Ther., 2006, 112, pp. 630648.
    31. 31)
      • 5. Lo, A., Lin, C.T., Wu, H.C.: ‘Hepatocellular carcinoma cell-specific peptide ligand for targeted drug delivery’, Mol. Cancer Therapy, 2008, 7, (3), pp. 579589.
    32. 32)
      • 15. Rapoport, N.: ‘Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery’, Prog. Polym. Sci., 2007, 32, pp. 962990.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0229
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0229
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading