access icon free Synthesis, characterisation and potential applications of polyaniline/chitosan-Ag-nano-biocomposite

Biodegradable polymers have greatly promoted the development of environmental, biomedical and allied sciences because of their biocompatibility and doping chemistry. The emergence of nanotechnology has envisaged greater options for the development of biodegradable materials. Polyaniline grafted chitosan (i.e. biodegradable PANI) copolymer was prepared by the chemical in situ polymerisation of aniline using ammonium per sulphate as initiator while Ag nanoparticle were synthesised by chemical reduction method and incorporated in to the polymer matrix. The as prepared materials were characterised by X-ray diffraction, Fourier transform Infra-red spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis. Moreover energy storage capacity, impedance properties were also studied. The main focus was on the photocatalytic degradation of organic dyes to remove the toxic and carcinogenic pollutants. This polymer nano-biocomposite has multifold applications and can be used as excellent materials for enhanced photodegradation and removal of toxic contaminants from waste waters and natural water streams. In addition, the biocompatible materials with excellent mechanical properties and low toxicity can also be used for tissue engineering, drug delivery and electrical energy storage devices.

Inspec keywords: X-ray diffraction; nanoparticles; biodegradable materials; transmission electron microscopy; Fourier transform infrared spectra; reduction (chemical); nanofabrication; polymerisation; X-ray chemical analysis; filled polymers; polymer blends; silver; nanocomposites

Other keywords: biodegradable PANI; toxic pollutants; Fourier transform Infrared spectroscopy; doping chemistry; tissue engineering; biocompatibility; biodegradable polymers; carcinogenic pollutants; Ag; biodegradable materials; energy dispersive X-ray analysis; polyaniline grafted chitosan copolymer; photodegradation; chemical in situ polymerisation; nanotechnology; waste waters; nanoparticle; X-ray diffraction; mechanical properties; drug delivery; polymer matrix; impedance properties; natural water streams; transmission electron microscopy; chemical reduction method; electrical energy storage devices; toxic contaminants; polyaniline-chitosan-silver-nanobiocomposite; energy storage capacity

Subjects: Biomedical materials; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Infrared and Raman spectra and scattering (condensed matter); Polymer reactions and polymerization; Electromagnetic radiation spectrometry (chemical analysis); Other methods of nanofabrication

References

    1. 1)
      • 8. Wei, Y., Ramakrishnan, H., Patel, S.A.: ‘Chemical and electrochemical copolymerization of aniline with alkyl ring-substituted anilines’, Macromolecules, 1990, 23, (3), pp. 758764.
    2. 2)
      • 5. Guo, Z., Hahn, H.T., Lin, H., et al: ‘Magnetic and magnetoresistance behaviors of particulate iron/vinyl ester resin nanocomposites’, J. Appl. Phy., 2008, 104, (1), p. 014314.
    3. 3)
      • 32. Chauhan, C.C., Jotania, R.B., Jotania, K.R.: ‘Conductivity and di electric properties of M-type barium magnesium hexaferrite powder’, Int. J. Adv. Eng. Res. Stud, 2012, 1, pp. 2527.
    4. 4)
      • 12. Qi, X., Tan, C., Wei, J., et al: ‘Synthesis of graphene–conjugated polymer nanocomposites for electronic device applications’, Nanoscale, 2013, 5, (4), pp. 14401451.
    5. 5)
      • 22. Pouget, J.P., Jozefowicz, M.E., Epstein, A., et al: ‘X-ray structure of polyaniline’, Macromolecules, 1991, 24, (3), pp. 779789.
    6. 6)
      • 23. Wang, D., An, J., Luo, Q., et al: ‘A convenient approach to synthesize stable silver nanoparticles and silver/polystyrene nanocomposite particles’, J. Appl. Polym. Sci., 2008, 110, (5), pp. 30383046.
    7. 7)
      • 26. Sharifian, I.: ‘Conductive and biodegradable polyaniline/starch blends and their composites with polystyrene’, J. Iran. Poly., 2011, 20, (4), pp. 319328.
    8. 8)
      • 25. Sultana, S.: ‘Synthesis, characterization and electrical properties of CdI 2 doped Al2O3 and TiO2 superionic conductors’, J. Alloys Compd., 2011, 509, (41), pp. 98429848.
    9. 9)
      • 29. Jiang, J., Ai, L.H., Liu, L.Y.: ‘Poly (aniline-co-o-toluidine)/BaFe12O19 composite: Preparation and characterization’, Mater. Lett., 2010, 64, (7), pp. 888890.
    10. 10)
      • 4. Sultana, S., Khan, M.Z., Umar, K.: ‘Synthesis and characterization of copper ferrite nanoparticles doped polyaniline’, J. Alloys Compd., 2012, 535, pp. 4449.
    11. 11)
      • 11. Boutry, C.M., Müller, M., Hierold, C.: ‘Junctions between metals and blends of conducting and biodegradable polymers (PLLA-PPy and PCL-PPy)’, Mat. Sci. Eng. C, 2012, 32, (6), pp. 16101620.
    12. 12)
      • 17. Yang, Z., Shi, Y., Wang, B., et al: ‘Photocatalytic activity of magnetically anatase TiO2 with high crystallinity and stability for dyes degradation: Insights into the dual roles of SiO2 interlayer between TiO2 and CoFe2O4’, Appl. Surf. Sci., 2017, 399, pp. 192199.
    13. 13)
      • 20. He, X., Zhang, Q., Ling, Z.: ‘Kinetics and magnetic properties of sol–gel derived NiZn ferrite–SiO2 composites’, Mater. Lett., 2003, 57, (20), pp. 30313036.
    14. 14)
      • 3. Farghali, A.A., Moussa, M., Khedr, M.H.: ‘Synthesis and characterization of novel conductive and magnetic nano-composites’, J. Alloys Compd., 2010, 499, (1), pp. 98103.
    15. 15)
      • 24. Das, R., Nath, S.S., Chakdar, D., et al: ‘Preparation of silver nanoparticles and their characterization’, J Nanotechnol., 2009, 5, pp. 16.
    16. 16)
      • 18. Hosseini, S.H., Simiari, J., Farhadpour, B.: ‘Chemical and electrochemical grafting of polyaniline onto chitosan’, J. Iran. Poly, 2009, 18, (1), pp. 313.
    17. 17)
      • 1. Jayasekara, R., Harding, I., Bowa, I., et al: ‘Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation’, J. Polym. Environ, 2005, 13, pp. 231251.
    18. 18)
      • 7. Ansari, R., Keivani, M.B.: ‘Polyaniline conducting electroactive polymers thermal and environmental stability studies’, J. Chem., 2006, 4, pp. 202217.
    19. 19)
      • 21. Samzadeh-Kermani, A., Esfandiary, N.: ‘Synthesis and characterization of new biodegradable chitosan/polyvinyl alcohol/cellulose nanocomposite’, ANP, 2016, 5, (01), p. 18.
    20. 20)
      • 16. Abdullah, C.K., Jawaid, M., Khalil, H.A., et al: ‘Oil palm trunk polymer composite: Morphology, water absorption, and thickness swelling behaviours’, BioResources, 2012, 7, (3), pp. 29482959.
    21. 21)
      • 33. Sultana, S., Rafiuddin, R.: ‘Enhancement of ionic conductivity in the composite solid electrolyte system: TlI–Al2O3’, Ionics, 2009, 15, (5), pp. 621625.
    22. 22)
      • 27. Soares, B.G., Leyva, M.E., Barra, G.M., et al: ‘Dielectric behavior of polyaniline synthesized by different techniques’, J. Europ. Polym/, 2006, 42, (3), pp. 676686.
    23. 23)
      • 35. Dıaz-Flores, L.L., Bon, R.R., Galván, A.M., et al: ‘Impedance spectroscopy studies on SnO2 films prepared by the sol–gel process’, J. Phys. Chem. Solids., 2003, 64, (7), pp. 10371042.
    24. 24)
      • 34. Scott, A.H., McPherson, A.T., Curtis, H.L.: ‘US national bureau of standards’, J. Res., 1933, 11, p. 173.
    25. 25)
      • 14. Kluge, J.A., Mauck, R.L.: ‘Synthetic/biopolymer nanofibrous composites as dynamic tissue engineering scaffolds’, in Jayakumar, R., Shantikumar, N. (Eds.): ‘Biomedical applications of polymeric nanofibers’ (Springer Berlin Heidelberg, 2011), pp. 101130.
    26. 26)
      • 28. Kong, J.Z., Li, A.D., Li, X.Y., et al: ‘Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle’, J. Solid State Chem., 2010, 183, (6), pp. 13591364.
    27. 27)
      • 9. Blinova, N.V., Stejskal, J., Trchová, M., et al: ‘Polymerization of aniline on polyaniline membranes’, J. Phys. Chem. B., 2007, 111, (10), pp. 24402448.
    28. 28)
      • 13. Van Vlierberghe, S., Dubruel, P., Schacht, E.: ‘Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review’, Biomacromolecules, 2011, 12, (5), pp. 13871408.
    29. 29)
      • 15. Goswami, S., Maiti, U.N., Maiti, S., et al: ‘Preparation of graphene–polyaniline composites by simple chemical procedure and its improved field emission properties’, Carbon, 2011, 49, (7), pp. 22452252.
    30. 30)
      • 6. Sultana, S., Khan, M.Z., Umar, K., et al: ‘Electrical, thermal, photocatalytic and antibacterial studies of metallic oxide nanocomposite doped polyaniline’, J. Mater. Sci. Tech., 2013, 29, (9), pp. 795800.
    31. 31)
      • 30. Chakrabarti, S., Dutta, B.K.: ‘Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst’, J. Hazardous Mater., 2004, 112, (3), pp. 269278.
    32. 32)
      • 31. Pirzada, B.M., Mir, N.A., Qutub, N., et al: ‘Synthesis, characterization and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures’, Mater. Sci. Eng.B, 2015, 193, pp. 137145.
    33. 33)
      • 19. Chuang, H.Y., Chen, D.H.: ‘Fabrication and photocatalytic activities in visible and UV light regions of Ag@ TiO2 and NiAg@ TiO2 nanoparticles’, Nanotechnology, 2009, 20, (10), p. 105704.
    34. 34)
      • 2. Chen, G.-Q., Wu, Q.: ‘The application of polyhydroxyalkanoates as tissue engineering materials’, Biomaterials, 2005, 26, (33), pp. 65656578.
    35. 35)
      • 10. Qaiser, A.A., Hyland, M.M., Patterson, D.A.: ‘Control of polyaniline deposition on microporous cellulose ester membranes by in situ chemical polymerization’, J. Phys. Chem. B, 2009, 113, (45), pp. 1498614993.
    36. 36)
      • 36. Pal, M., Brahma, P., Chakravorty, D.: ‘AC conductivity in bismuth-substituted barium hexaferrites’, J. Phys. Soc. Jpn., 1994, 63, (9), pp. 33563360.
    37. 37)
      • 37. Azam, A., Ahmed, A.S., Chaman, M., et al: ‘Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy’, J. Appl. Phys., 2010, 108, (9), p. 094329.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0215
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0215
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading