access icon free Comparison effects of titanium dioxide nanoparticles on immune cells in adaptive and innate immune system

Titanium dioxide nanoparticles (TiO2-NPs) have been increasingly mixed in food and daily use products. Therefore, the investigation of cytotoxic effects of TiO2-NPs is required to allay concerns of health effects related to contact with products containing TiO2-NPs. In this study, the authors demonstrated how TiO2-NPs impact on two main sub-types of immune cells that play a major role in adaptive and innate immune system. Human T-lymphocytes (Jurkat cells) and murine macrophages (RAW 264.7 cells) were used in this study. The authors results showed that cell viability of Jurkat and RAW 264.7 cells were significantly decreased, when cells were treated with TiO2-NPs at 250 and 500µg/ml. However, the decrease of cell viability of RAW 264.7 cells was higher than that of Jurkat cells. A similar trend was also found in DNA fragmentation. An induction of reactive oxygen species was detected in both cells treated with TiO2-NPs at concentrations ≥25µg/ml. A significant induction of tumour necrosis factor alpha (TNF-α) was found in Jurkat and RAW 264.7 cells treated with 25µg/ml TiO2-NPs. In contrast, there was no significant induction of interleukin-6 (IL-6) in both cells that were treated with different concentrations of TiO2-NPs.

Inspec keywords: tumours; toxicology; molecular biophysics; nanoparticles; molecular configurations; nanomedicine; DNA; biomedical materials; cellular biophysics; titanium compounds; blood

Other keywords: human T-lymphocytes; adaptive immune system; cell viability; cytotoxic effects; interleukin-6; DNA fragmentation; TiO2; food products; reactive oxygen species; titanium dioxide nanoparticles; RAW 264.7 cells; TNF-α; Jurkat cells; immune cells; daily use products; innate immune system; murine macrophages; tumour necrosis factor alpha; comparison effects; health effects

Subjects: Macromolecular configuration (bonds, dimensions); Biomolecular structure, configuration, conformation, and active sites; Nanotechnology applications in biomedicine; Biomedical materials; Cellular biophysics; Biomolecular interactions, charge transfer complexes

References

    1. 1)
      • 23. Watjen, W., Beyersmann, D.: ‘Cadmium-induced apoptosis in C6 glioma cells: influence of oxidative stress’, Biometals, 2004, 17, (1), pp. 6578.
    2. 2)
      • 20. Yang, W., Peters, J.I., Williams, R.O.: ‘Inhaled nanoparticles—A current review’, Int. J. Pharm., 2008, 356, pp. 239247.
    3. 3)
      • 19. Whitworth, P.W., Pak, C.C., Esgro, J., et al: ‘Macrophages and cancer’, Cancer Metastasis Rev., 1990, 8, (4), pp. 319351.
    4. 4)
      • 10. Becker, K., Schroecksnadel, S., Geisler, S., et al: ‘Effects of TiO2 nanoparticles on human myelomonocytic cell line THP-1’, J. Nanomater. Mol. Nanopart., 2014, S2, p. 005.
    5. 5)
      • 36. Eom, H.J., Choi, J.: ‘P38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T Cells’, Environ. Sci. Technol., 2010, 44, (21), pp. 83378342.
    6. 6)
      • 7. Uboldi, C., Urban, P., Gilliland, D., et al: ‘Role of the crystalline form of titanium dioxide nanoparticles: rutile, and not anatase, induces toxic effects in Balb/3t3 mouse fibroblasts’, Toxicol. in Vitro, 2016, 31, pp. 137145.
    7. 7)
      • 34. Chen, P., Kanehira, K., Taniguchi, A.: ‘Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles’, Sci. Technol. Adv. Mater., 2013, 14, (1), p. 015008.
    8. 8)
      • 17. Zolnik, B.S., Gonzalez-Fernandez, A., Sadrieh, N., et al: ‘Nanoparticles and the immune system’, Endocrinology, 2010, 151, (2), pp. 458465.
    9. 9)
      • 12. Kononenko, V., Narat, M., Drobne, D.: ‘Nanoparticle interaction with the immune System’, Arh. Hig. Rada Toksikol., 2015, 66, (2), pp. 97108.
    10. 10)
      • 32. Wiseman, H., Halliwell, B.: ‘Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer’, Biochem. J., 1996, 313, (Pt1), pp. 1729.
    11. 11)
      • 33. Fu, P.P., Xia, Q., Hwang, H.M., et al: ‘Mechanisms of nanotoxicity: generation of reactive oxygen species’, J. Food Drug Anal., 2014, 22, (1), pp. 6475.
    12. 12)
      • 29. Jeng, H.A., Swanson, J.: ‘Toxicity of metal oxide nanoparticles in mammalian cells’, J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 2006, 41, (12), pp. 26992711.
    13. 13)
      • 22. Kotamraju, S., Konorev, E.A., Joseph, J., et al: ‘Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species’, J. Biol. Chem., 2000, 275, (43), pp. 3358533592.
    14. 14)
      • 38. Croft, M.: ‘The role of TNF superfamily members in T-cell function and diseases’, Nat. Rev. Immunol., 2009, 9, (4), pp. 271285.
    15. 15)
      • 16. Romani, L.: ‘Cell Mediated Immunity to fungi: a reassessment’, Med. Mycol., 2008, 46, (6), pp. 515529.
    16. 16)
      • 14. Hahn, H., Kaufmann, S.H.: ‘The role of cell-mediated immunity in bacterial infections’, Rev. Infect. Dis., 1981, 3, (6), pp. 12211250.
    17. 17)
      • 8. Wilhelmi, V., Fischer, U., Weighardt, H., et al: ‘Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a P47phox- and Nrf2-independent manner’, PloS one, 2013, 8, (6), p. e65704.
    18. 18)
      • 24. Thurn, K.T., Arora, H., Paunesku, T., et al: ‘Endocytosis of titanium dioxide nanoparticles in prostate cancer Pc-3 m cells’, Nanomedicine, 2011, 7, (2), pp. 123130.
    19. 19)
      • 5. Urner, M., Schlicker, A., Z'Graggen, B.R., et al: ‘Inflammatory response of lung macrophages and epithelial cells after exposure to redox active nanoparticles: effect of solubility and antioxidant treatment’, Env. Sci. Technol., 2014, 48, (23), pp. 1396013968.
    20. 20)
      • 11. Park, E.J., Lee, S.Y., Lee, G.H., et al: ‘Sheet-type titania, but not P25, induced paraptosis accompanying apoptosis in murine alveolar macrophage cells’, Toxicol. Lett., 2014, 230, (1), pp. 6979.
    21. 21)
      • 27. Shukla, R.K., Sharma, V., Pandey, A.K., et al: ‘Ros-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells’, Toxicol. In Vitro, 2011, 25, (1), pp. 231241.
    22. 22)
      • 6. Wu, Q., Guo, D., Du, Y., et al: ‘Uvb irradiation enhances TiO2 nanoparticle-induced disruption of calcium homeostasis in human lens epithelial cells’, Photochem. Photobiol., 2014, 90, (6), pp. 13241331.
    23. 23)
      • 21. Wilhelmi, V., Fischer, U., van Berlo, D., et al: ‘Evaluation of apoptosis induced by nanoparticles and fine particles in Raw 264.7 macrophages: facts and artefacts’, Toxicol. In Vitro, 2012, 26, (2), pp. 323334.
    24. 24)
      • 31. Hemnani, T., Parihar, M.S.: ‘Reactive oxygen species and oxidative DNA damage’, Indian J. Physiol. Pharmacol., 1998, 42, (4), pp. 440452.
    25. 25)
      • 35. El-Said, K.S., Ali, E.M., Kanehira, K., et al: ‘Molecular mechanism of DNA damage induced by titanium dioxide nanoparticles in toll-like receptor 3 or 4 expressing human hepatocarcinoma cell lines’, J. Nanobiotechnol., 2014, 12, p. 48.
    26. 26)
      • 2. Actis, L., Gaviria, L., Guda, T., et al: ‘Antimicrobial surfaces for craniofacial implants: state of the art’, J. Korean Assoc. Oral. Maxillofac. Surg., 2013, 39, (2), pp. 4354.
    27. 27)
      • 37. Pissuwan, D., Kumagai, Y., Smith, N.I.: ‘Effect of surface-modified gold nanorods on the inflammatory cytokine response in macrophage cells’, Part. Part. Syst. Charact., 2013, 30, (5), pp. 427433.
    28. 28)
      • 39. Maggio, M., Guralnik, J.M., Longo, D.L., et al: ‘Interleukin-6 in aging and chronic disease: a magnificent pathway’, J. Gerontol. A Biol. Sci. Med. Sci., 2006, 61, (6), pp. 575584.
    29. 29)
      • 15. Finlay, B.B., McFadden, G.: ‘Anti-immunology: evasion of the host immune system by bacterial and viral pathogens’, Cell, 2006, 124, (4), pp. 767782.
    30. 30)
      • 28. Kang, S.J., Kim, B.M., Lee, Y.J., et al: ‘Titanium dioxide nanoparticles trigger P53-mediated damage response in peripheral blood lymphocytes’, Environ. Mol. Mutagen., 2008, 49, (5), pp. 399405.
    31. 31)
      • 1. Skocaj, M., Filipic, M., Petkovic, J., et al: ‘Titanium dioxide in our everyday life; Is it safe?’, Radiol. Oncol., 2011, 45, (4), pp. 227247.
    32. 32)
      • 9. Fu, Y., Zhang, Y., Chang, X., et al: ‘Systemic immune effects of titanium dioxide nanoparticles after repeated intratracheal instillation in rat’, Int. J. Mol. Sci., 2014, 15, (4), pp. 69616973.
    33. 33)
      • 30. Masoud, R., Bizouarn, T., Trepout, S., et al: ‘Titanium dioxide nanoparticles increase superoxide anion production by acting on NADPH oxidase’, PloS one, 2015, 10, (12), p. e0144829.
    34. 34)
      • 4. Iavicoli, I., Leso, V., Fontana, L., et al: ‘Toxicological effects of titanium dioxide nanoparticles: a review of in vitro mammalian studies’, Eur. Rev. Med. Pharmacol. Sci., 2011, 15, (5), pp. 481508.
    35. 35)
      • 3. Shi, H., Magaye, R., Castranova, V., et al: ‘Titanium dioxide nanoparticles: a review of current toxicological data’, Part. Fibre toxicol., 2013, 10, p. 15.
    36. 36)
      • 18. Zhao, L., Seth, A., Wibowo, N., et al: ‘Nanoparticle vaccines’, Vaccine, 2014, 32, (3), pp. 327337.
    37. 37)
      • 13. Luo, Y.H., Chang, L.W., Lin, P.: ‘Metal-based nanoparticles and the immune system: activation, inflammation, and potential applications’, BioMed. Res. Int., 2015, 2015, p. 143720.
    38. 38)
      • 26. Sohaebuddin, S.K., Thevenot, P.T., Baker, D., et al: ‘Nanomaterial cytotoxicity is composition, size, and cell type dependent’, Part. Fibre Toxicol., 2010, 7, (1), pp. 117.
    39. 39)
      • 25. Hsiao, I.L., Bierkandt, F.S., Reichardt, P., et al: ‘Quantification and visualization of cellular uptake of Tio2 and Ag nanoparticles: comparison of different Icp-Ms techniques’, J. Nanobiotechnol., 2016, 14, (1), p. 50.
    40. 40)
      • 41. Val, S., Hussain, S., Boland, S., et al: ‘Carbon black and titanium dioxide nanoparticles induce pro-inflammatory responses in bronchial epithelial cells: need for multiparametric evaluation due to adsorption artifacts’, Inhal. Toxicol., 2009, 21Suppl 1, pp. 115122.
    41. 41)
      • 40. Kocbach, A., Todandsdal, A.I., Lag, M., et al: ‘Differential binding of cytokines to environmentally relevant particles: a possible source for misinterpretation of in vitro results?’, Toxicol. Lett., 2008, 176, (2), pp. 131137.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0205
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0205
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading