access icon free Biomimetic synthesis and anticancer activity of Eurycoma longifolia branch extract-mediated silver nanoparticles

In the present study, silver nanoparticles (AgNPs) were synthesised by adding 1 mM Ag nitrate solution to different concentrations (1%, 2.5%, 5%) of branch extracts of Eurycoma longifolia, a well known medicinal plant in South–East Asian countries. Characterisation of AgNPs was carried out using techniques such as ultraviolet–visible spectrophotometry, X-ray diffractrometry, Fourier transform infrared–attenuated total reflection spectroscopy (FTIR–ATR), scanning electron microscopy. XRD analysis revealed face centre cubic structure of AgNPs and FTIR–ATR showed that primary and secondary amide groups in combination with the protein molecules present in the branch extract were responsible for the reduction and stabilisation of AgNPs. Furthermore, antioxidant [2,2-diphenyl-1-picrylhydrazyl and 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)], antimicrobial and anticancer activities of AgNPs were investigated. The highest bactericidal activity of these biogenic AgNPs was found against Escherichia coli with zone inhibition of 11 mm. AgNPs exhibited significant anticancer activity against human glioma cells (DBTRG and U87) and human breast adenocarcinoma cells (MCF-7 and MDA-MB-231) with IC50 values of 33, 42, 60 and 38 µg/ml.

Inspec keywords: nanomedicine; silver; nanofabrication; visible spectra; nanoparticles; biochemistry; X-ray diffraction; Fourier transform infrared spectra; ultraviolet spectra; cancer; proteins; biomedical materials; antibacterial activity; biomimetics; molecular biophysics; attenuated total reflection; cellular biophysics; microorganisms

Other keywords: antioxidant; X-ray diffractometry; secondary amide groups; medicinal plant; bactericidal activity; Biomimetic synthesis; scanning electron microscopy; MCF-7 human breast adenocarcinoma cells; FTIR-ATR spectroscopy; DBTRG human glioma cells; protein molecules; Eurycoma longifolia branch extract-mediated silver nanoparticles; U87 human glioma cells; 2,2-diphenyl-1-picrylhydrazyl; 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid); antimicrobial activity; Ag; ultraviolet-visible spectrophotometry; Fourier transform infrared-attenuated total reflection spectroscopy; anticancer activity; Escherichia coli; face centre cubic structure; MDA-MB-231 human breast adenocarcinoma cells; nitrate solution; XRD; primary amide groups; zone inhibition; biogenic silver nanoparticles

Subjects: Physical chemistry of biomolecular solutions and condensed states; Other methods of nanofabrication; Infrared and Raman spectra in metals; Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures); Biomedical materials; Cellular biophysics; Visible and ultraviolet spectra of metals, semimetals, and alloys; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Low-dimensional structures: growth, structure and nonelectronic properties; Nanotechnology applications in biomedicine

References

    1. 1)
      • 6. Mohamed EL-Rafie, H., Abdel-Aziz Hamed, M.: ‘Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species’, Adv. Nat. Sci., Nanosci. Nanotechnol., 2014, 5, (3), p. 035008.
    2. 2)
      • 13. Kumar, P., Govindaraju, M., Senthamilselvi, S., et al: ‘Photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca’, Colloids Surf. B, Biointerfaces, 2013, 103, pp. 658661.
    3. 3)
      • 29. Mohd-Fuat, A.R, . Kofi, E.A., et al: ‘Mutagenic and cytotoxic properties of three herbal plants from Southeast Asia’, Trop. Biomed., 2007, 24, (2), pp. 4959.
    4. 4)
      • 28. Varghese, C.P., Ambrose, C., Jin, S.C., et al: ‘Antioxidant and anti-inflammatory activity of Eurycoma longifolia Jack a traditional medicinal plant in Malaysia’, Int. J. Pharma. Sci. Nanotechnol., 2013, 5, (4), pp. 18751878.
    5. 5)
      • 21. Tillotsan, G.S., Theriault, N.: ‘New and alternative approaches to tackling antibiotics resistance’, F1000prime Rep., 2013, 5, (51), pp. 19.
    6. 6)
      • 7. Mohan, S.C., Sasikala, K., Anand, T., et al: ‘Green synthesis, antimicrobial and antioxidant effects of silver nanoparticles using Canthium coromandelicum leaves extract’, Res. J. Microbiol., 2014, 9, (3), p. 142.
    7. 7)
      • 76. Al-Salahi, O.S.A., Ji, D., Majid, A.M.S.A., et al: ‘Anti-tumor activity of Eurycoma longifolia root extracts against K-562 cell line: in vitro and in vivo study’, PLoS One, 2014, 9, (1), p. e83818.
    8. 8)
      • 41. Musarrat, J., Dwivedi, S., Singh, B.R., et al: ‘Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09’, Bioresour. Technology., 2010, 101, (22), pp. 87728776.
    9. 9)
      • 37. Femila, E.E., Srimathi, R., Deivasigamani, C.: ‘Removal of malachite green using silver nanoparticles via adsorption and catalytic degradation’, Int. J. Pharm. Pharma. Sci., 2014, 6, (8), pp. 579583.
    10. 10)
      • 19. Rad, J.S., Alfatemi, S.M.H., Rad, M.S., et al: ‘In-vitro antioxidant and antibacterial activities of Xanthium strumarium L. extracts on methicillin-susceptible and methicillin- resistant Staphylococcus aureus’, Anc. Sci. Life, 2013, 33, (2), p. 109.
    11. 11)
      • 54. Anju Varghesee, R., Anandhi, P., Arunadevi, R., et al: ‘Satin leaf (Chrysophyllum oliviforme) extract mediated green synthesis of silver nanoparticles: antioxidant and anticancer activities’, J. Pharma. Sci. Res., 2015, 7, (6), pp. 266273.
    12. 12)
      • 53. Koyyati, R., Nagati, V., Merugu, R., et al: ‘Biological synthesis of silver nanoparticles using Raphanus sativus var. longipinnatus leaf extract and evaluation of their antioxidant and antibacterial activity’, Int. J. Med. Pharma. Sci., 2013, 3, (4), pp. 89100.
    13. 13)
      • 43. Shankar, S.S., Ahmad, A., Sastry, M.: ‘Geranium leaf assisted biosynthesis of silver nanoparticles’, Biotechnol. Prog., 2003, 19, (6), pp. 16271631.
    14. 14)
      • 10. Pasupuleti, V.R., Prasad, T.N.V.K.V., Shiekh, R.A., et al: ‘Biogenic silver nano particles using Rhinacanthus nasutus leaf extract: synthesis, spectral analysis, and antimicrobial studies’, Int. J. Nanomed., 2013, 8, pp. 33553364.
    15. 15)
      • 60. Shrivastava, S., Bera, T., Roy, A., et al: ‘Characterization of enhanced antibacterial effects of novel silver nanoparticles’, Nanotechnology, 2007, 18, (22), p. 225103.
    16. 16)
      • 64. Sondi, I., Salopek-Sondi, B.: ‘Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria’, J. Colloid Interface Sci., 2004, 275, (1), pp. 177182.
    17. 17)
      • 45. Reddy, M.C., Rama Murthy, K.S., Srilakshmi, A., et al: ‘Phytosynthesis of eco-friendly silver nanoparticles and biological applications – a novel concept in Nanobiotechnology’, Afr. J. Biotechnol., 2015, 14, (3), pp. 222247.
    18. 18)
      • 57. Sathiyapriya, D.G., R, P.S.: ‘Antioxidant activity of biosynthesised Psidium guajava leaf extract mediated’, Int. J. Recent Sci. Res., 2014, 5, (9), pp. 16891692.
    19. 19)
      • 65. Danilczuk, M., Lund, A., Sadio, J., et al: ‘Conduction electron spin resonance of small silver particles’, Spectrochim. Acta A, Mol. Biomol. Spectrosc., 2006, 63, (1), pp. 189191.
    20. 20)
      • 69. Hatchett, D.W., White, H.S.: ‘Electrochemistry of sulfur adlayers on the low-index faces of silver’, J. Phys. Chem., 1996, 100, (23), pp. 98549859.
    21. 21)
      • 36. Logeswari, P., Silambarasan, S., Abraham, J.: ‘Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties’, Sci. Iranica, 2013, 20, (3), pp. 10491054.
    22. 22)
      • 23. Wellington Kevin, W.: ‘Understanding cancer and the anticancer activities of naphthoquinones – a review’, RSC Adv., 2015, 5, (26), pp. 2030920338.
    23. 23)
      • 24. Sulaiman, G.M., Mohammed, W.H., Marzoog, T.R., et al: ‘Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract’, Asian Pac. J. Trop. Biomed., 2013, 3, (1), pp. 5863.
    24. 24)
      • 73. Chudasama, B., Vala, A.K., Andhariya, N., et al: ‘Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures’, Nano Res., 2009, 2, (12), pp. 955965.
    25. 25)
      • 26. Rao, P.V., Nallappan, D., Madhavi, K., et al: ‘Phytochemicals and biogenic metallic nanoparticles as anticancer agents’, Oxidative medicine and cellular longevity., 2016, pp. 115.
    26. 26)
      • 75. Tee, T.T., Cheah, Y.H., Hawariah, L.P.A.: ‘F16, a fraction from Eurycoma longifolia jack extract, induces apoptosis via a caspase-9-independent manner in MCF-7 cells’, Anticancer Res., 2007, 27, (5A), pp. 34253430.
    27. 27)
      • 2. Mittal, A.K., Chisti, Y., Banerjee, U.C.: ‘Synthesis of metallic nanoparticles using plant extracts’, Biotechnol. Adv., 2013, 31, pp. 346356.
    28. 28)
      • 61. Bhagavan, N.V.: ‘Medical biochemistry’ (Academic Press, San Diego, 2002).
    29. 29)
      • 49. Awwad, A.M., Salem, N.M., Abdeen, A.O.: ‘Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity’, Int. J. Ind. Chem., 2013, 4, (1), p. 29.
    30. 30)
      • 44. Parashar, U.K., Saxena, P.S., Srivastava, A.: ‘Bioinspired synthesis of silver nanoparticles’, Dig. J. Nanomater. Biostruct., 2009, 4, (1), pp. 159166.
    31. 31)
      • 47. Ramteke, C., Chakrabarti, T., Sarangi, B.K., et al: ‘Synthesis of silver nanoparticles from the aqueous extracts of leaves of Ocimum sanctum for enhanced antibacterial activity’, J. Chem., 2013, pp. 18.
    32. 32)
      • 55. Valantina, R.: ‘Selective ABTS and DPPH –radical scavenging activity of peroxide from vegetable oils’, Int. Food Res. J., 2015, 22, (1), pp. 289294.
    33. 33)
      • 32. Jiwajinda, S., Santisopasri, V., Murakami, A., et al: ‘In vitro anti-tumor promoting and anti- parasitic activities of the quassinoids from Eurycoma longifolia, a medicinal plant in Southeast Asia’, J. Ethnopharmacol., 2002, 82, (1), pp. 5558.
    34. 34)
      • 50. Sangeetha, A., Singaravelu, S.U.: ‘Investigation of free radical scavenging activity of biogenic silver nano particles’, Int. J. Pharma. Biosci., 2015, 6, (2), pp. 439445.
    35. 35)
      • 71. Prabhu, S., Poulose, E.K.: ‘Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical application, and toxicity effects’, Int. Nano Lett., 2012, 2, (1), pp. 110.
    36. 36)
      • 15. Durgasani, S., Pichika, M.R., Nadarajah, V.D., et al: ‘Comparative antioxidant and anti-inflammatory effect of [6]-gingerol,[8]-gingerol and [6]-shagol’, J. Ethnopharmacol., 2010, 127, (2), pp. 515520.
    37. 37)
      • 17. Pham-Huy, L.A., He, H., Pham-Huy, C.: ‘Free radicals, antioxidants in disease and health’, Int. J. Biomed. Sci., 2008, 4, (2), pp. 8996.
    38. 38)
      • 18. Mittal, A.K., Kaler, A., Banerjee, U.C.: ‘Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of Rhododendron dauricum’, Nano Biomed. Eng., 2012, 4, (3), pp. 118124.
    39. 39)
      • 12. Banerjee, P., Satapathy, M., Mukhopahayay, A., et al: ‘Leaf extract mediated green synthesis of silver nano particles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis’, Bioresour. Bioprocess., 2014, 1, (1), pp. 110.
    40. 40)
      • 70. Patil, S.V., Borase, H.P., Patil, C.D., et al: ‘Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential’, Appl. Biochem. Biotechnol., 2012, 167, (4), pp. 776790.
    41. 41)
      • 20. Moteriya, P., Chanda, S.: ‘Low cost and ecofriendly photosynthesis of silver nanoparticles using Cassia roxburghii stem extract and its antimicrobial and antioxidant efficacy’, Open J. Adv. Drug Deliv., 2014, 2, (4), pp. 557575.
    42. 42)
      • 63. Umadevi, M., Rani, T., Balakrishnan, T., et al: ‘Antimicrobial activity of silver nanoparticles prepared under an ultrasonic field’, Int. J. Pharma. Sci. Nanotechnol., 2011, 4, pp. 14911496.
    43. 43)
      • 74. Kuo, P.C., Damu, A.G., Lee, K.H., et al: ‘Cytotoxic and antimalarial constituents from the roots of Eurycoma longifolia’, Biorg. Med. Chem., 2004, 12, pp. 537544.
    44. 44)
      • 35. Husen, R., Pihie, A.H.L., Nallappan, M.: ‘Screening for antihyperglycaemic activity in several local herbs of Malaysia’, J. Ethnopharmacol., 2004, 95, (2), pp. 205208.
    45. 45)
      • 33. Purwantiningsih Hussin, A.H., Chan, K.L.: ‘Free radical scavenging activity of the standardized ethanolic extract of Eurycoma longifolia (TAF-273)’, Int. J. Pharm. Pharma. Sci., 2011, 3, (4), pp. 343347.
    46. 46)
      • 72. Chen, S.F., Li, J.P., Qian, K., et al: ‘Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect’, Nano Res., 2010, 3, (4), pp. 244255.
    47. 47)
      • 4. Russell, A.D., Hugo, W.B.: ‘7 antimicrobial activity and action of silver’, Prog. Med. Chem., 1994, 31, pp. 351370.
    48. 48)
      • 48. Selvam, G.G., Sivakumar, K.: ‘Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) JV Lamouroux’, Appl. Nanosci., 2014, 5, (5), pp. 617622.
    49. 49)
      • 77. Hajjouli, S., Chateauvieux, S., Teiten, M.H., et al: ‘Eurycomanone and eurycomanol from Eurycoma longifolia Jack as regulators of signaling pathways involved in proliferation, cell death and inflammation’, Molecules, 2014, 19, (9), pp. 1464914666.
    50. 50)
      • 56. Kokila, T., Ramesh, P.S., Geetha, D.: ‘Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: a novel biological approach’, Appl. Nanosci., 2015, 5, (8), pp. 911920.
    51. 51)
      • 3. Maity, D., Pattanayak, S., Mollick, M.R., et al: ‘Green one step morphosynthesis of silver nanoparticles and their antibacterial and anticancerous activities’, New J. Chem., 2016, 40, pp. 27492762.
    52. 52)
      • 30. Danial, M., Saghal, G., Ahmad Mubbarakh, S., et al: ‘Antibacterial studies on in vitro plant parts of medicinally important Eurycoma longifolia (Tongkat Ali)’, Pakistan J. Bot., 2013, 45, (5), pp. 16931700.
    53. 53)
      • 16. Mukherjee, S., Pawar, N., Kulkarni, O., et al: ‘Evaluation of free-radical quenching properties of standard ayurvedic formulation vayasthapana Rasayana’, BMC Complement. Altern. Med., 2011, 11, (1), p. 38.
    54. 54)
      • 52. Chandra Mohan, S., Sasikala, K., Anand, T., et al: ‘Green synthesis, antimicrobial and antioxidant effects of silver nanoparticles using Canthium coromandelicum leaves extracts’, Res. J. Microbiol., 2014, 9, (3), pp. 142150.
    55. 55)
      • 11. Sathishkumar, M., Sneha, K., Won, S.W., et al: ‘Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity’, Colloids Surf. B, Biointerfaces, 2009, 73, (2), pp. 332338.
    56. 56)
      • 22. Jeong, S.H., Yeo, S.Y., Yi, S.C.: ‘The effect of filter particle size on the antibacterial properties of compounded polymer/silver fibers’, J. Mater. Sci., 2005, 40, pp. 54075411.
    57. 57)
      • 40. Firdhouse, M.J., Lalitha, P.: ‘Green synthesis of silver nanoparticles using the aqueous extract of Portulacaoleracea (L.)’, Asian J. Pharma. Clin. Res., 2012, 6, (1), pp. 9294.
    58. 58)
      • 78. Zakaria, Y., Rahmat, A., Pihie, A.H.H.L., et al: ‘Eurycomanone induce apoptosis in HepG2 cells via up-regulation of p53’, Cancer cell Int., 2009, 9, (1), p. 16.
    59. 59)
      • 42. Ali, K., Ahmed, B., Dwivedi, S., et al: ‘Microwave accelerated green synthesis of stable silver nanoparticles with Eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates’, PloS One, 2015, 10, (7), p. e0131178.
    60. 60)
      • 31. Farouk, A.E., Benafri, A.: ‘Antibacterial activity of Eurycoma longifolia Jack. A Malaysian medicinal plant’, Saudi Med. J., 2007, 28, (9), pp. 14221424.
    61. 61)
      • 5. Silver, S.: ‘Bacterial silver resistance: molecular biology and uses and misuses of silver compounds’, FEMS Microbiol. Rev., 2003, 27, (2–3), pp. 341353.
    62. 62)
      • 25. AshaRani, P.V., Low KahMun, G., Hande, M.P., et al: ‘Cytotoxicity and genotoxicity of silver nanoparticles in human cells’, ACS Nano, 2008, 3, (2), pp. 279290.
    63. 63)
      • 8. Geethalakshmi, R., Sarada, D.: ‘Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization and antimicrobial properties’, Int. J. Nanomed., 2012, 7, pp. 53755384.
    64. 64)
      • 27. Jeyaraj, M., Sathishkumar, G., Sivanandhan, G., et al: ‘Biogenic silver nanoparticles for cancer treatment: an experimental report’, Colloids Surf. B., 2013, 106, pp. 8692.
    65. 65)
      • 39. Vanaja, M., Gnanajobitha, G., Paulkumar, K., et al: ‘Phytosynthesis of silver nanoparticles by Cissusquadrangularis: influence of physiochemical factors’, J. Nanostruct. Chem., 2013, 3, (1), p. 17.
    66. 66)
      • 59. Kim, J.S., Kuk, E., Yu, K.N., et al: ‘Antimicrobial effects of silver nanoparticles’, Nanomed. Nanotechnol. Biol. Med., 2007, 3, (1), pp. 95101.
    67. 67)
      • 58. Tenover, F.C.: ‘Mechanisms of antimicrobial resistance in bacteria’, Am. J. Med., 2006, 119, (6 Suppl. 1), pp. S3S10, discussion S62-S70.
    68. 68)
      • 67. Feng, Q.L., Wu, J., Chen, G.Q., et al: ‘A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus’,J. Biomed. Mater. Res., 2000, 52, (4), pp. 662668.
    69. 69)
      • 34. Ang, H.H., Cheang, H.S.: ‘Studies on the anxiolytic activity of Eurycoma longifolia jack roots in mice’, Jpn. J. Pharmacol., 1999, 79, (4), pp. 497500.
    70. 70)
      • 62. Petica, A., Gavriliu, S., Lungu, M., et al: ‘Colloidal silver solutions with antimicrobial properties’, Mater. Sci. Eng. B, 2008, 152, (1), pp. 2227.
    71. 71)
      • 66. Matsumura, Y., Yoshikata, K., Kunisaki, S.I., et al: ‘Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate’, Appl. Environ. Microbiol., 2003, 69, (7), pp. 42784281.
    72. 72)
      • 14. Sivaranjini, K., Meenakshisundaram, M.: ‘Biological synthesis of silver nanoparticles using Ocimum basillicum leaf extract and their antimicrobial activity’, Int. Res. J. Pharm., 2013, 4, (1), pp. 225229.
    73. 73)
      • 38. Johnson, A.S., Obota, I.B., Ukponga, U.S.: ‘Green synthesis of silver nanoparticles using Artemisia annua and Sidaacuta leaves extract and their antimicrobial, antioxidant and corrosion inhibition potentials’, J. Mater. Environ. Sci., 2014, 5, (3), pp. 899906.
    74. 74)
      • 9. Khalil, M.M.H., Ismail, E.H., El-Baghdady, K.Z., et al: ‘Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity’, Arab. J. Chem., 2014, 7, (6), pp. 11311139.
    75. 75)
      • 51. Kokila, T., Ramesh, P.S., Geetha, D.: ‘A biogenic approach for green synthesis of silver nanoparticles using peel extract of Citrus sinensis and its application’, Int. J. ChemTech Res., 2015, 7, (2), pp. 804813.
    76. 76)
      • 68. Morones, J.R., Elechiguerra, J.L., Camacho, A., et al: ‘The bactericidal effect of silver nanoparticles’, Nanotechnology, 2005, 16, (10), p. 23446.
    77. 77)
      • 1. Natarajan, K., Selvaraj, S., Ramachandra, M.V.: ‘Microbial production of silver nanoparticles’, Dig. J. Nanomater. Biostruct., 2010, 5, pp. 135140.
    78. 78)
      • 46. Bunghez, I.R., Patrascu, M.E.B., Badea, N., et al: ‘Antioxidant silver nanoparticles green synthesized using ornamental plants’, J. Optoelectron. Adv. Mater., 2012, 14, (11–12), pp. 10161022.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0181
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0181
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading