http://iet.metastore.ingenta.com
1887

Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.)

Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.)

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Nanobiotechnology — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Environmental pollution and toxicity have been increasing due to the overuse of chemical fertilisers, which has encouraged nanotechnologists to develop eco-friendly nano-biofertilisers. The authors demonstrated the effect of biogenic copper nanoparticles (CuNPs) on the growth of pigeon pea (Cajanus cajan L.). The UV–visible analysis showed absorbance at 615 nm. Nanoparticle tracking and analysis revealed particle concentration of 2.18 × 108 particles/ml, with an average size of 33 nm. Zeta potential was found to be −16.7 mV, which showed stability. X-ray diffraction pattern depicted the face centred cubic structure of CuNPs; Fourier transform infrared spectroscopy demonstrated the capping due to acidic groups, and transmission electron micrograph showed nanoparticles with size 20–30 nm. The effect of CuNPs (20 ppm) on plant growth was studied, for the absorption of CuNPs by plants on photosynthesis, which was evaluated by measuring chlorophyll a fluorescence using Handy-Plant Efficiency Analyser. CuNPs treatment showed a remarkable increase in height, root length, fresh and dry weights and performance index of seedlings. The overall growth of plants treated with CuNPs after 4 weeks was recorded. The results revealed that inoculation of CuNPs contribute growth and development of pigeon pea due to growth promoting activity of CuNPs.

References

    1. 1)
      • Y. Kang , S. Khan , X. Ma .
        1. Kang, Y., Khan, S., Ma, X.: ‘Climate change impacts on crop yield, crop water productivity and food security – a review Yinhong’, Prog. Nat. Sci., 2009, 19, pp. 16651674.
        . Prog. Nat. Sci. , 1665 - 1674
    2. 2)
      • C.-G. Kim , S.-M. Lee , H.-K. Jeong .
        2. Kim, C.-G., Lee, S.-M., Jeong, H.-K., et al: ‘Impacts of climate change in Korean agriculture and its counterstrategies’. Korea Research Report, no. 593, 2010.
        .
    3. 3)
      • P. Sutton .
        3. Sutton, P.: ‘The Sustainability-Promoting Firm, an essential player in the politics of sustainability’, Ecopolitics Conf. XI, University of Melbourne, Australia, October 1997, Available at http://www.green-innovations.asn.au/spf.htm, accessed February 2015.
        . Ecopolitics Conf. XI, University of Melbourne, Australia
    4. 4)
      • M. Ashrafuzzaman , F.A. Hossen , M.R. Ismail .
        4. Ashrafuzzaman, M., Hossen, F.A., Ismail, M.R., et al: ‘Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth’, Afr. J. Biotechnol., 2009, 8, (7), pp. 12471252.
        . Afr. J. Biotechnol. , 7 , 1247 - 1252
    5. 5)
      • F. Ahmad , I. Ahmad , M.S. Khan .
        5. Ahmad, F., Ahmad, I., Khan, M.S.: ‘Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities’, Microbiol. Res., 2008, 163, pp. 173181.
        . Microbiol. Res. , 173 - 181
    6. 6)
      • C.M. Rico , S. Majumdar , M. Duarte-Gardea .
        6. Rico, C.M., Majumdar, S., Duarte-Gardea, M., et al: ‘Interaction of nanoparticles with edible plants and their possible implications in the food chain’, J. Agri. Food Chem., 2011, 59, pp. 34853498.
        . J. Agri. Food Chem. , 3485 - 3498
    7. 7)
      • D.W. Galbraith .
        7. Galbraith, D.W.: ‘Nanobiotechnology: silica breaks through in plants’, Nat. Nanotechnol., 2007, 2, pp. 272273.
        . Nat. Nanotechnol. , 272 - 273
    8. 8)
      • P. Gonzalez-Melendi , R. Fernandez-Pacheco , M.J. Coronado .
        8. Gonzalez-Melendi, P., Fernandez-Pacheco, R., Coronado, M.J.: ‘Nanoparticles as smart treatment delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues’, Ann. Bot. London, 2008, 101, pp. 187195.
        . Ann. Bot. London , 187 - 195
    9. 9)
      • P. Mahajan , S.K. Dhoke , A.S. Khanna .
        9. Mahajan, P., Dhoke, S.K., Khanna, A.S.: ‘Effect of Nano-ZnO particle suspension on growth of mung (Vigna radiata) and Gram (Cicer arietinum) seedlings using plant agar method’, J. Nanotechnol., 2011, (2011), ID 696535.
        . J. Nanotechnol. , 2011
    10. 10)
      • R. Nair , S.H. Varghese , B.G. Nair .
        10. Nair, R., Varghese, S.H., Nair, B.G., et al: ‘Nanoparticulate material delivery to plants’, Plant Sci., 2010, 179, pp. 154163.
        . Plant Sci. , 154 - 163
    11. 11)
      • H.J. Park , S.H. Kim , H.J. Kim .
        11. Park, H.J., Kim, S.H., Kim, H.J., et al: ‘A new composition of nano sized silica-silver for control of various plant diseases’, Plant Pathol., 2007, 22, pp. 295302.
        . Plant Pathol. , 295 - 302
    12. 12)
      • C.M. Ruffini , R. Cremonini .
        12. Ruffini, C.M., Cremonini, R.: ‘Nanoparticles and higher plants’, Caryologia, 2009, 62, pp. 161165.
        . Caryologia , 161 - 165
    13. 13)
      • J. Hawthorne , R. De la Torre-Roche , B. Xing .
        13. Hawthorne, J., De la Torre-Roche, R., Xing, B., et al: ‘Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain’, Environ. Sci. Technol., 2014, 48, pp. 1310213109, dx.doi.org/10.1021/es503792f.
        . Environ. Sci. Technol. , 13102 - 13109
    14. 14)
      • A. Servin , W. Elmer , A. Mukherjee .
        14. Servin, A., Elmer, W., Mukherjee, A., et al: ‘A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield’, J. Nanopart. Res., 2015, 17, p. 92, doi: 10.1007/s11051-015-2907-7.
        . J. Nanopart. Res. , 92
    15. 15)
      • C.M. Lu , C.Y. Zhang , J.Q. Wen .
        15. Lu, C.M., Zhang, C.Y., Wen, J.Q., et al: ‘Research on the effect of nanometer materials on germination and growth enhancement of glycine max and its mechanism’, Soybean Sci., 2002, 21, pp. 168172.
        . Soybean Sci. , 168 - 172
    16. 16)
      • F. Hong , F. Yang , C. Liu .
        16. Hong, F., Yang, F., Liu, C.: ‘Influences of nano-TiO2 on the chloroplast aging of spinach under light’, Biol. Trace Elem. Res., 2005, 104, pp. 249260.
        . Biol. Trace Elem. Res. , 249 - 260
    17. 17)
      • F. Hong , J. Zhou , C. Liu .
        17. Hong, F., Zhou, J., Liu, C.: ‘Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach’, Biol. Trace Elem. Res., 2005, 105, pp. 269279.
        . Biol. Trace Elem. Res. , 269 - 279
    18. 18)
      • F. Yang , F. Hong , W. You .
        18. Yang, F., Hong, F., You, W.: ‘Influences of nanoanatase TiO2 on the nitrogen metabolism of growing spinach’, Biol. Trace Elem. Res., 2006, 110, pp. 179190.
        . Biol. Trace Elem. Res. , 179 - 190
    19. 19)
      • J.E. Canas , M. Long , S. Nations .
        19. Canas, J.E., Long, M., Nations, S.: ‘Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species’, Environ. Toxicol. Chem., 2008, 27, pp. 19221931.
        . Environ. Toxicol. Chem. , 1922 - 1931
    20. 20)
      • W. Maksymiec .
        20. Maksymiec, W.: ‘Effect of copper on cellular processes in higher plants’, Photosynthetica, 1997, 34, (3), pp. 321342.
        . Photosynthetica , 3 , 321 - 342
    21. 21)
      • A. Manceau , K.L. Nagy , M.A. Marcus .
        21. Manceau, A., Nagy, K.L., Marcus, M.A., et al: ‘Formation of metallic copper nanoparticles at the soil–root interface’, Environ. Sci. Technol., 2008, 42, (5), pp. 17661772, doi: 10.1021/es072017o.
        . Environ. Sci. Technol. , 5 , 1766 - 1772
    22. 22)
      • G.F. Nekrasova , O.S. Ushakova , A.E. Ermakov .
        22. Nekrasova, G.F., Ushakova, O.S., Ermakov, A.E., et al: ‘Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa planch’, Russ. J. Ecol., 2011, 42, (6), pp. 458463, doi: 10.1134/S1067413611060117.
        . Russ. J. Ecol. , 6 , 458 - 463
    23. 23)
      • E. Masarovičová , K. Kráľová .
        23. Masarovičová, E., Kráľová, K.: ‘Metal nanoparticles and plants’, Ecol. Chem. Eng. S., 2013, 20, (1), pp. 922, doi: 10.2478/Eces-2013-0001.
        . Ecol. Chem. Eng. S. , 1 , 9 - 22
    24. 24)
      • S. Asli , P.M. Neumann .
        24. Asli, S., Neumann, P.M.: ‘Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport’, Plant Cell Environ., 2009, 32, pp. 577584, doi: 10.1111/j.1365-3040.2009.01952.x.
        . Plant Cell Environ. , 577 - 584
    25. 25)
      • M. Ghosh , M. Bandyopadhyay , A. Mukherjee .
        25. Ghosh, M., Bandyopadhyay, M., Mukherjee, A.: ‘Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes’, Chemosphere, 2010, 81, (10), pp. 12531262, doi:10.1016/j.chemosphere.2010.09.022.
        . Chemosphere , 10 , 1253 - 1262
    26. 26)
      • Y.S. El-Temsah , E.J. Joner .
        26. El-Temsah, Y.S., Joner, E.J.: ‘Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil’, Environ. Toxicol., 2012, 27, (1), pp. 4249, doi: 10.1002/tox.20610.
        . Environ. Toxicol. , 1 , 42 - 49
    27. 27)
      • D. Stampoulis , S.K. Sinha , J.C. White .
        27. Stampoulis, D., Sinha, S.K., White, J.C.: ‘Assay dependent phytotoxicity of nanoparticles to plants’, Environ. Sci. Technol., 2009, 43, pp. 94739479.
        . Environ. Sci. Technol. , 9473 - 9479
    28. 28)
      • J.A. Hernandez-Viezcas , H. Castillo-Michel , J.C. Andrews .
        28. Hernandez-Viezcas, J.A., Castillo-Michel, H., Andrews, J.C., et al: ‘In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max)’, ACS Nano., 2013, 7, (2), pp. 14151423.
        . ACS Nano. , 2 , 1415 - 1423
    29. 29)
      • K. Jeyasubramanian , U.U.G. Thoppey , G.S. Hikku .
        29. Jeyasubramanian, K., Thoppey, U.U.G., Hikku, G.S., et al: ‘Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles’, RSC Adv., 2016, 6, pp. 1545115459, doi: 10.1039/c5ra23425e.
        . RSC Adv. , 15451 - 15459
    30. 30)
      • C.K. Das , G. Srivastava , A. Dubey .
        30. Das, C.K., Srivastava, G., Dubey, A., et al: ‘The seed stimulant effect of nano iron pyrite is compromised by nano cerium oxide: regulation by the trace ionic species generated in the aqueous suspension of iron pyrite’, RSC Adv., 2016, 6, pp. 6702967038, doi: 10.1039/C6RA15584G.
        . RSC Adv. , 67029 - 67038
    31. 31)
      • D. Nagaonkar , S. Shende , M. Rai .
        31. Nagaonkar, D., Shende, S., Rai, M.: ‘Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa’, Biotechnol. Prog., 2015, 31, (2), pp. 557565.
        . Biotechnol. Prog. , 2 , 557 - 565
    32. 32)
      • G. Rasul , G.B. Thapa .
        32. Rasul, G., Thapa, G.B.: ‘Sustainability of ecological and conventional agricultural systems in Bangladesh: an assessment based on environmental, economic and social perspectives’, Agri. Syst., 2004, 79, pp. 327351, doi: 10.1016/S0308-521X (03)00090-8).
        . Agri. Syst. , 327 - 351
    33. 33)
      • S. Shende , A.P. Ingle , A. Gade .
        33. Shende, S., Ingle, A.P., Gade, A., et al: ‘Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity’, World J. Microbiol. Biotechnol., 2015, 31, (6), pp. 865873, doi: 10.1007/s11274-015-1840-3.
        . World J. Microbiol. Biotechnol. , 6 , 865 - 873
    34. 34)
      • D. Deng , Y. Jin , Y. Cheng .
        34. Deng, D., Jin, Y., Cheng, Y., et al: ‘Copper nanoparticles: Aqueous phase synthesis and conductive films fabrication at low sintering temperature’, Appl. Mater. Interfaces, 2013, 5, pp. 38393846o, dx.doi.org/10.1021/am400480k.
        . Appl. Mater. Interfaces , 3839 - 3846
    35. 35)
      • A. Henglein .
        35. Henglein, A.: ‘Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu (CN)2’, J. Phys. Chem. B, 2000, 104, pp. 12061211.
        . J. Phys. Chem. B , 1206 - 1211
    36. 36)
      • H. Hashemipour , P. Rahimi , M.E. Zadeh .
        36. Hashemipour, H., Rahimi, P., Zadeh, M.E., et al: ‘Experimental investigation on the synthesis and size control of copper nanoparticle via chemical reduction method’, Int. J. Nanosci. Nanotechnol., 2010, 6, (3), pp. 144149.
        . Int. J. Nanosci. Nanotechnol. , 3 , 144 - 149
    37. 37)
      • F. Raheman , S. Deshmukh , A. Ingle .
        37. Raheman, F., Deshmukh, S., Ingle, A., et al: ‘Silver Nanoparticles: Novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L.)’, Nano Biomed. Eng., 2011, 3, (3), pp. 174178, doi: 10.5101/nbe.v3i3.p174-178.
        . Nano Biomed. Eng. , 3 , 174 - 178
    38. 38)
      • P.R. Tidke , I. Gupta , A.K. Gade .
        38. Tidke, P.R., Gupta, I., Gade, A.K., et al: ‘Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis’, IEEE Trans. Nanobiosci., 2014, 13, (4), pp. 397402, doi:10.1109/TNB.2014.2347803.
        . IEEE Trans. Nanobiosci. , 4 , 397 - 402
    39. 39)
      • S.B. Kashid , R.D. Tak , R.W. Raut .
        39. Kashid, S.B., Tak, R.D., Raut, R.W.: ‘Antibody tagged gold nanoparticles as scattering probes for the pico molar detection of the proteins in blood serum using nanoparticle tracking analyzer’, Colloid. Surf. B Biointerfaces, 2015, 133, pp. 208213, doi.org/10.1016/j.colsurfb.2015.06.004.
        . Colloid. Surf. B Biointerfaces , 208 - 213
    40. 40)
      • N. Tiwari , R. Pandit , S. Gaikwad .
        40. Tiwari, N., Pandit, R., Gaikwad, S., et al: ‘Biosynthesis of Zinc oxide nanoparticles by petals extract of Rosa indica L., its formulation as nail paint and evaluation of antifungal activity against fungi causing onychomycosis’, IET Nanobiotechnol., 2016, 11, (2), pp. 205211, doi: 10.1049/iet-nbt.2016.0003.
        . IET Nanobiotechnol. , 2 , 205 - 211
    41. 41)
      • J.A. Gudadhe , S.R. Bonde , S.C. Gaikwad .
        41. Gudadhe, J.A., Bonde, S.R., Gaikwad, S.C., et al: ‘Phoma glomerata: a novel agent for fabrication of iron oxide nanoparticles’, J. Bionanosci., 2011, 5, pp. 138142.
        . J. Bionanosci. , 138 - 142
    42. 42)
      • P. Pokale , S. Shende , A. Gade .
        42. Pokale, P., Shende, S., Gade, A., et al: ‘Biofabrication of calcium phosphate nanoparticles using the plant Mimusops elengi’, Environ. Chem. Lett., 2014, 12, pp. 393399, doi: 10.1007/s10311-014-0460-8.
        . Environ. Chem. Lett. , 393 - 399
    43. 43)
      • A. El-Sabry , F.M. Soliman , R.D. Handy .
        43. El-Sabry, A., Soliman, F.M., Handy, R.D., et al: ‘Uptake of copper sulphate and copper nanoparticles using whole gut sacs of rainbow trout (Oncorhynchusmykiss)’, Egyptian J. Aquac., 2013, 3, (4), pp. 117.
        . Egyptian J. Aquac. , 4 , 1 - 17
    44. 44)
      • A. Nasirian .
        44. Nasirian, A.: ‘Synthesis and characterization of Cu nanoparticles and studying of their catalytic properties’, Int. J. Nano Dim., 2012, 2, (3), pp. 159164.
        . Int. J. Nano Dim. , 3 , 159 - 164
    45. 45)
      • D. Mott , J. Galkowski , L. Wang .
        45. Mott, D., Galkowski, J., Wang, L., et al: ‘Synthesis of size-controlled and shaped copper nanoparticles’, Langmuir, 2007, 23, pp. 57405745.
        . Langmuir , 5740 - 5745
    46. 46)
      • A.B.S. Sastry , R.B.K. Aamanchi , C.S. Rama Linga Prasad .
        46. Sastry, A.B.S., Aamanchi, R.B.K., Rama Linga Prasad, C.S., et al: ‘Large-scale green synthesis of Cu nanoparticles’, Environ. Chem. Lett., 2013, 11, (2), pp. 183187, doi: 10.1007/s10311-012-0395-x.
        . Environ. Chem. Lett. , 2 , 183 - 187
    47. 47)
      • M.S. Usman , N.A. Ibrahim , K. Shameli .
        47. Usman, M.S., Ibrahim, N.A., Shameli, K., et al: ‘Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods’, Molecules, 2012, 17, pp. 1492814936.
        . Molecules , 14928 - 14936
    48. 48)
      • A. Hafeez , A. Razzaq , T. Mahmood .
        48. Hafeez, A., Razzaq, A., Mahmood, T., et al: ‘Potential of copper nanoparticles to increase growth and yield of wheat’, J. Nanosci. Adv. Tech., 2015, 1, (1), pp. 611.
        . J. Nanosci. Adv. Tech. , 1 , 6 - 11
    49. 49)
      • T. Adhikari , S. Kundu , A.K. Biswas .
        49. Adhikari, T., Kundu, S., Biswas, A.K., et al: ‘Effect of copper oxide nanoparticle on seed germination of selected crops’, J. Agric. Sci. Tech., 2012, A 2, pp. 815823.
        . J. Agric. Sci. Tech. , 815 - 823
    50. 50)
      • B. Duffy . (2007)
        50. Duffy, B.: ‘Zinc and plant disease’, in Datnoff, L.E., Elmer, W.H., Huber, D.M. (Eds.): ‘Mineral nutrition and plant disease’ (The American Phytopathological Society, St. Paul, 2007), pp. 155168.
        .
    51. 51)
      • I. Evans , E. Solberg , D.M. Huber . (2007)
        51. Evans, I., Solberg, E., Huber, D.M.: ‘Copper and plant disease’, in Datnoff, L.E., Elmer, W.H., Huber, D.M. (Eds.): ‘Mineral nutrition and plant disease’ (The American Phytopathological Society, St. Paul, 2007), p. 177.
        .
    52. 52)
      • D.M. Huber , I.A. Thompson . (2007)
        52. Huber, D.M., Thompson, I.A.: ‘Nitrogen and plant disease’, in Datnoff, L.E., Elmer, W.H., Huber, D.M. (Eds.): ‘Mineral nutrition and plant disease’ (The American Phytopathological Society, St. Paul, 2007), p. 31.
        .
    53. 53)
      • V. Römheld , H. Marschner . (1991)
        53. Römheld, V., Marschner, H.: ‘Function of micronutrients in plants’ (Soil Science Society of America, Madison, 1991, 2nd edn.) p. 297.
        .
    54. 54)
      • A. Oukarroum , L. Barhoumi , M. Samadani .
        54. Oukarroum, A., Barhoumi, L., Samadani, M., et al: ‘Toxic effects of Nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L.’, BioMed. Res. Inter., 2015, (2015), Article ID 501326, pp. 17, doi: 10.1155/2015/501326.
        . BioMed. Res. Inter. , 2015 , 1 - 7
    55. 55)
      • K. Mengel , E.A. Kirkby . (2001)
        55. Mengel, K., Kirkby, E.A.: ‘Principles of plant nutrition’ (Kluwer Academic Publishers, Dordrecht, 2001, 5th edn.), p. 467.
        .
    56. 56)
      • I. Yruela .
        56. Yruela, I.: ‘Toxic metals in plants: copper in plants’, Braz. J. Plant Physiol., 2005, 17, (1), pp. 145156.
        . Braz. J. Plant Physiol. , 1 , 145 - 156
    57. 57)
      • H. Mazumdar .
        57. Mazumdar, H.: ‘Accumulation and uptake of silver nanoparticles during seed germinations of selected annual crop plants’, Int. J. ChemTech. Res., 2014, 6, (1), pp. 108113.
        . Int. J. ChemTech. Res. , 1 , 108 - 113
    58. 58)
      • S. Suppan . (2013)
        58. Suppan, S.: ‘Nanomaterials in soil. Our future food chain?’ (Institute for Agriculture and Trade Policy, Minneapolis, 2013).
        .
    59. 59)
      • J.M. Herrera , G. Rubio , L.L. Häner .
        59. Herrera, J.M., Rubio, G., Häner, L.L., et al: ‘Emerging and established technologies to increase nitrogen use efficiency of cereals’, Agronomy, 2016, 6, (25), pp. 119, doi: 10.3390/agronomy6020025.
        . Agronomy , 25 , 1 - 19
    60. 60)
      • M.R. Naderi , A. Danesh-Shahraki .
        60. Naderi, M.R., Danesh-Shahraki, A.: ‘Nanofertilizers and their roles in sustainable agriculture’, Int. J. Agric. Crop Sci., 2013, 5, (19), pp. 22292232.
        . Int. J. Agric. Crop Sci. , 19 , 2229 - 2232
    61. 61)
      • N. Veronica , T. Guru , R. Thatikunta .
        61. Veronica, N., Guru, T., Thatikunta, R., et al: ‘Role of nano fertilizers in agricultural farming’, Int. J. Environ. Sci. Technol., 2015, 1, (1), pp. 13.
        . Int. J. Environ. Sci. Technol. , 1 , 1 - 3
    62. 62)
      • M.K. Rai , S.D. Deshmukh , A.P. Ingle .
        62. Rai, M.K., Deshmukh, S.D., Ingle, A.P., et al: ‘Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria’, J. Appl. Microbiol., 2012, 112, pp. 841852.
        . J. Appl. Microbiol. , 841 - 852
    63. 63)
      • K. Giannousi , I. Avramidis , C. Dendrinou-Samara .
        63. Giannousi, K., Avramidis, I., Dendrinou-Samara, C.: ‘Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans’, RSC Adv., 2013, 3, pp. 2174321752.
        . RSC Adv. , 21743 - 21752
    64. 64)
      • P. Kanhed , S. Birla , S. Gaikwad .
        64. Kanhed, P., Birla, S., Gaikwad, S., et al: ‘In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi’, Mater. Lett., 2014, 115, pp. 1317, doi: 10.1016/j.matlet.2013.10.011.
        . Mater. Lett. , 13 - 17
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0179
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0179
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address