Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.)

Environmental pollution and toxicity have been increasing due to the overuse of chemical fertilisers, which has encouraged nanotechnologists to develop eco-friendly nano-biofertilisers. The authors demonstrated the effect of biogenic copper nanoparticles (CuNPs) on the growth of pigeon pea (Cajanus cajan L.). The UV–visible analysis showed absorbance at 615 nm. Nanoparticle tracking and analysis revealed particle concentration of 2.18 × 108 particles/ml, with an average size of 33 nm. Zeta potential was found to be −16.7 mV, which showed stability. X-ray diffraction pattern depicted the face centred cubic structure of CuNPs; Fourier transform infrared spectroscopy demonstrated the capping due to acidic groups, and transmission electron micrograph showed nanoparticles with size 20–30 nm. The effect of CuNPs (20 ppm) on plant growth was studied, for the absorption of CuNPs by plants on photosynthesis, which was evaluated by measuring chlorophyll a fluorescence using Handy-Plant Efficiency Analyser. CuNPs treatment showed a remarkable increase in height, root length, fresh and dry weights and performance index of seedlings. The overall growth of plants treated with CuNPs after 4 weeks was recorded. The results revealed that inoculation of CuNPs contribute growth and development of pigeon pea due to growth promoting activity of CuNPs.

References

    1. 1)
      • 27. Stampoulis, D., Sinha, S.K., White, J.C.: ‘Assay dependent phytotoxicity of nanoparticles to plants’, Environ. Sci. Technol., 2009, 43, pp. 94739479.
    2. 2)
      • 43. El-Sabry, A., Soliman, F.M., Handy, R.D., et al: ‘Uptake of copper sulphate and copper nanoparticles using whole gut sacs of rainbow trout (Oncorhynchusmykiss)’, Egyptian J. Aquac., 2013, 3, (4), pp. 117.
    3. 3)
      • 20. Maksymiec, W.: ‘Effect of copper on cellular processes in higher plants’, Photosynthetica, 1997, 34, (3), pp. 321342.
    4. 4)
      • 55. Mengel, K., Kirkby, E.A.: ‘Principles of plant nutrition’ (Kluwer Academic Publishers, Dordrecht, 2001, 5th edn.), p. 467.
    5. 5)
      • 31. Nagaonkar, D., Shende, S., Rai, M.: ‘Biosynthesis of copper nanoparticles and its effect on actively dividing cells of mitosis in Allium cepa’, Biotechnol. Prog., 2015, 31, (2), pp. 557565.
    6. 6)
      • 1. Kang, Y., Khan, S., Ma, X.: ‘Climate change impacts on crop yield, crop water productivity and food security – a review Yinhong’, Prog. Nat. Sci., 2009, 19, pp. 16651674.
    7. 7)
      • 7. Galbraith, D.W.: ‘Nanobiotechnology: silica breaks through in plants’, Nat. Nanotechnol., 2007, 2, pp. 272273.
    8. 8)
      • 53. Römheld, V., Marschner, H.: ‘Function of micronutrients in plants’ (Soil Science Society of America, Madison, 1991, 2nd edn.) p. 297.
    9. 9)
      • 54. Oukarroum, A., Barhoumi, L., Samadani, M., et al: ‘Toxic effects of Nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L.’, BioMed. Res. Inter., 2015, (2015), Article ID 501326, pp. 17, doi: 10.1155/2015/501326.
    10. 10)
      • 60. Naderi, M.R., Danesh-Shahraki, A.: ‘Nanofertilizers and their roles in sustainable agriculture’, Int. J. Agric. Crop Sci., 2013, 5, (19), pp. 22292232.
    11. 11)
      • 10. Nair, R., Varghese, S.H., Nair, B.G., et al: ‘Nanoparticulate material delivery to plants’, Plant Sci., 2010, 179, pp. 154163.
    12. 12)
      • 18. Yang, F., Hong, F., You, W.: ‘Influences of nanoanatase TiO2 on the nitrogen metabolism of growing spinach’, Biol. Trace Elem. Res., 2006, 110, pp. 179190.
    13. 13)
      • 3. Sutton, P.: ‘The Sustainability-Promoting Firm, an essential player in the politics of sustainability’, Ecopolitics Conf. XI, University of Melbourne, Australia, October 1997, Available at http://www.green-innovations.asn.au/spf.htm, accessed February 2015.
    14. 14)
      • 64. Kanhed, P., Birla, S., Gaikwad, S., et al: ‘In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi’, Mater. Lett., 2014, 115, pp. 1317, doi: 10.1016/j.matlet.2013.10.011.
    15. 15)
      • 29. Jeyasubramanian, K., Thoppey, U.U.G., Hikku, G.S., et al: ‘Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles’, RSC Adv., 2016, 6, pp. 1545115459, doi: 10.1039/c5ra23425e.
    16. 16)
      • 8. Gonzalez-Melendi, P., Fernandez-Pacheco, R., Coronado, M.J.: ‘Nanoparticles as smart treatment delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues’, Ann. Bot. London, 2008, 101, pp. 187195.
    17. 17)
      • 23. Masarovičová, E., Kráľová, K.: ‘Metal nanoparticles and plants’, Ecol. Chem. Eng. S., 2013, 20, (1), pp. 922, doi: 10.2478/Eces-2013-0001.
    18. 18)
      • 45. Mott, D., Galkowski, J., Wang, L., et al: ‘Synthesis of size-controlled and shaped copper nanoparticles’, Langmuir, 2007, 23, pp. 57405745.
    19. 19)
      • 42. Pokale, P., Shende, S., Gade, A., et al: ‘Biofabrication of calcium phosphate nanoparticles using the plant Mimusops elengi’, Environ. Chem. Lett., 2014, 12, pp. 393399, doi: 10.1007/s10311-014-0460-8.
    20. 20)
      • 32. Rasul, G., Thapa, G.B.: ‘Sustainability of ecological and conventional agricultural systems in Bangladesh: an assessment based on environmental, economic and social perspectives’, Agri. Syst., 2004, 79, pp. 327351, doi: 10.1016/S0308-521X (03)00090-8).
    21. 21)
      • 11. Park, H.J., Kim, S.H., Kim, H.J., et al: ‘A new composition of nano sized silica-silver for control of various plant diseases’, Plant Pathol., 2007, 22, pp. 295302.
    22. 22)
      • 33. Shende, S., Ingle, A.P., Gade, A., et al: ‘Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity’, World J. Microbiol. Biotechnol., 2015, 31, (6), pp. 865873, doi: 10.1007/s11274-015-1840-3.
    23. 23)
      • 41. Gudadhe, J.A., Bonde, S.R., Gaikwad, S.C., et al: ‘Phoma glomerata: a novel agent for fabrication of iron oxide nanoparticles’, J. Bionanosci., 2011, 5, pp. 138142.
    24. 24)
      • 5. Ahmad, F., Ahmad, I., Khan, M.S.: ‘Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities’, Microbiol. Res., 2008, 163, pp. 173181.
    25. 25)
      • 17. Hong, F., Zhou, J., Liu, C.: ‘Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach’, Biol. Trace Elem. Res., 2005, 105, pp. 269279.
    26. 26)
      • 61. Veronica, N., Guru, T., Thatikunta, R., et al: ‘Role of nano fertilizers in agricultural farming’, Int. J. Environ. Sci. Technol., 2015, 1, (1), pp. 13.
    27. 27)
      • 56. Yruela, I.: ‘Toxic metals in plants: copper in plants’, Braz. J. Plant Physiol., 2005, 17, (1), pp. 145156.
    28. 28)
      • 48. Hafeez, A., Razzaq, A., Mahmood, T., et al: ‘Potential of copper nanoparticles to increase growth and yield of wheat’, J. Nanosci. Adv. Tech., 2015, 1, (1), pp. 611.
    29. 29)
      • 6. Rico, C.M., Majumdar, S., Duarte-Gardea, M., et al: ‘Interaction of nanoparticles with edible plants and their possible implications in the food chain’, J. Agri. Food Chem., 2011, 59, pp. 34853498.
    30. 30)
      • 38. Tidke, P.R., Gupta, I., Gade, A.K., et al: ‘Fungus-mediated synthesis of gold nanoparticles and standardization of parameters for its biosynthesis’, IEEE Trans. Nanobiosci., 2014, 13, (4), pp. 397402, doi:10.1109/TNB.2014.2347803.
    31. 31)
      • 59. Herrera, J.M., Rubio, G., Häner, L.L., et al: ‘Emerging and established technologies to increase nitrogen use efficiency of cereals’, Agronomy, 2016, 6, (25), pp. 119, doi: 10.3390/agronomy6020025.
    32. 32)
      • 28. Hernandez-Viezcas, J.A., Castillo-Michel, H., Andrews, J.C., et al: ‘In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max)’, ACS Nano., 2013, 7, (2), pp. 14151423.
    33. 33)
      • 24. Asli, S., Neumann, P.M.: ‘Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport’, Plant Cell Environ., 2009, 32, pp. 577584, doi: 10.1111/j.1365-3040.2009.01952.x.
    34. 34)
      • 44. Nasirian, A.: ‘Synthesis and characterization of Cu nanoparticles and studying of their catalytic properties’, Int. J. Nano Dim., 2012, 2, (3), pp. 159164.
    35. 35)
      • 25. Ghosh, M., Bandyopadhyay, M., Mukherjee, A.: ‘Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes’, Chemosphere, 2010, 81, (10), pp. 12531262, doi:10.1016/j.chemosphere.2010.09.022.
    36. 36)
      • 39. Kashid, S.B., Tak, R.D., Raut, R.W.: ‘Antibody tagged gold nanoparticles as scattering probes for the pico molar detection of the proteins in blood serum using nanoparticle tracking analyzer’, Colloid. Surf. B Biointerfaces, 2015, 133, pp. 208213, doi.org/10.1016/j.colsurfb.2015.06.004.
    37. 37)
      • 4. Ashrafuzzaman, M., Hossen, F.A., Ismail, M.R., et al: ‘Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth’, Afr. J. Biotechnol., 2009, 8, (7), pp. 12471252.
    38. 38)
      • 16. Hong, F., Yang, F., Liu, C.: ‘Influences of nano-TiO2 on the chloroplast aging of spinach under light’, Biol. Trace Elem. Res., 2005, 104, pp. 249260.
    39. 39)
      • 62. Rai, M.K., Deshmukh, S.D., Ingle, A.P., et al: ‘Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria’, J. Appl. Microbiol., 2012, 112, pp. 841852.
    40. 40)
      • 35. Henglein, A.: ‘Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu (CN)2’, J. Phys. Chem. B, 2000, 104, pp. 12061211.
    41. 41)
      • 15. Lu, C.M., Zhang, C.Y., Wen, J.Q., et al: ‘Research on the effect of nanometer materials on germination and growth enhancement of glycine max and its mechanism’, Soybean Sci., 2002, 21, pp. 168172.
    42. 42)
      • 58. Suppan, S.: ‘Nanomaterials in soil. Our future food chain?’ (Institute for Agriculture and Trade Policy, Minneapolis, 2013).
    43. 43)
      • 34. Deng, D., Jin, Y., Cheng, Y., et al: ‘Copper nanoparticles: Aqueous phase synthesis and conductive films fabrication at low sintering temperature’, Appl. Mater. Interfaces, 2013, 5, pp. 38393846o, dx.doi.org/10.1021/am400480k.
    44. 44)
      • 52. Huber, D.M., Thompson, I.A.: ‘Nitrogen and plant disease’, in Datnoff, L.E., Elmer, W.H., Huber, D.M. (Eds.): ‘Mineral nutrition and plant disease’ (The American Phytopathological Society, St. Paul, 2007), p. 31.
    45. 45)
      • 63. Giannousi, K., Avramidis, I., Dendrinou-Samara, C.: ‘Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans’, RSC Adv., 2013, 3, pp. 2174321752.
    46. 46)
      • 40. Tiwari, N., Pandit, R., Gaikwad, S., et al: ‘Biosynthesis of Zinc oxide nanoparticles by petals extract of Rosa indica L., its formulation as nail paint and evaluation of antifungal activity against fungi causing onychomycosis’, IET Nanobiotechnol., 2016, 11, (2), pp. 205211, doi: 10.1049/iet-nbt.2016.0003.
    47. 47)
      • 22. Nekrasova, G.F., Ushakova, O.S., Ermakov, A.E., et al: ‘Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa planch’, Russ. J. Ecol., 2011, 42, (6), pp. 458463, doi: 10.1134/S1067413611060117.
    48. 48)
      • 30. Das, C.K., Srivastava, G., Dubey, A., et al: ‘The seed stimulant effect of nano iron pyrite is compromised by nano cerium oxide: regulation by the trace ionic species generated in the aqueous suspension of iron pyrite’, RSC Adv., 2016, 6, pp. 6702967038, doi: 10.1039/C6RA15584G.
    49. 49)
      • 12. Ruffini, C.M., Cremonini, R.: ‘Nanoparticles and higher plants’, Caryologia, 2009, 62, pp. 161165.
    50. 50)
      • 51. Evans, I., Solberg, E., Huber, D.M.: ‘Copper and plant disease’, in Datnoff, L.E., Elmer, W.H., Huber, D.M. (Eds.): ‘Mineral nutrition and plant disease’ (The American Phytopathological Society, St. Paul, 2007), p. 177.
    51. 51)
      • 36. Hashemipour, H., Rahimi, P., Zadeh, M.E., et al: ‘Experimental investigation on the synthesis and size control of copper nanoparticle via chemical reduction method’, Int. J. Nanosci. Nanotechnol., 2010, 6, (3), pp. 144149.
    52. 52)
      • 37. Raheman, F., Deshmukh, S., Ingle, A., et al: ‘Silver Nanoparticles: Novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L.)’, Nano Biomed. Eng., 2011, 3, (3), pp. 174178, doi: 10.5101/nbe.v3i3.p174-178.
    53. 53)
      • 14. Servin, A., Elmer, W., Mukherjee, A., et al: ‘A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield’, J. Nanopart. Res., 2015, 17, p. 92, doi: 10.1007/s11051-015-2907-7.
    54. 54)
      • 46. Sastry, A.B.S., Aamanchi, R.B.K., Rama Linga Prasad, C.S., et al: ‘Large-scale green synthesis of Cu nanoparticles’, Environ. Chem. Lett., 2013, 11, (2), pp. 183187, doi: 10.1007/s10311-012-0395-x.
    55. 55)
      • 47. Usman, M.S., Ibrahim, N.A., Shameli, K., et al: ‘Copper nanoparticles mediated by chitosan: synthesis and characterization via chemical methods’, Molecules, 2012, 17, pp. 1492814936.
    56. 56)
      • 9. Mahajan, P., Dhoke, S.K., Khanna, A.S.: ‘Effect of Nano-ZnO particle suspension on growth of mung (Vigna radiata) and Gram (Cicer arietinum) seedlings using plant agar method’, J. Nanotechnol., 2011, (2011), ID 696535.
    57. 57)
      • 57. Mazumdar, H.: ‘Accumulation and uptake of silver nanoparticles during seed germinations of selected annual crop plants’, Int. J. ChemTech. Res., 2014, 6, (1), pp. 108113.
    58. 58)
      • 13. Hawthorne, J., De la Torre-Roche, R., Xing, B., et al: ‘Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain’, Environ. Sci. Technol., 2014, 48, pp. 1310213109, dx.doi.org/10.1021/es503792f.
    59. 59)
      • 49. Adhikari, T., Kundu, S., Biswas, A.K., et al: ‘Effect of copper oxide nanoparticle on seed germination of selected crops’, J. Agric. Sci. Tech., 2012, A 2, pp. 815823.
    60. 60)
      • 2. Kim, C.-G., Lee, S.-M., Jeong, H.-K., et al: ‘Impacts of climate change in Korean agriculture and its counterstrategies’. Korea Research Report, no. 593, 2010.
    61. 61)
      • 19. Canas, J.E., Long, M., Nations, S.: ‘Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species’, Environ. Toxicol. Chem., 2008, 27, pp. 19221931.
    62. 62)
      • 21. Manceau, A., Nagy, K.L., Marcus, M.A., et al: ‘Formation of metallic copper nanoparticles at the soil–root interface’, Environ. Sci. Technol., 2008, 42, (5), pp. 17661772, doi: 10.1021/es072017o.
    63. 63)
      • 50. Duffy, B.: ‘Zinc and plant disease’, in Datnoff, L.E., Elmer, W.H., Huber, D.M. (Eds.): ‘Mineral nutrition and plant disease’ (The American Phytopathological Society, St. Paul, 2007), pp. 155168.
    64. 64)
      • 26. El-Temsah, Y.S., Joner, E.J.: ‘Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil’, Environ. Toxicol., 2012, 27, (1), pp. 4249, doi: 10.1002/tox.20610.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0179
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0179
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address