Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Actinobacterial-mediated synthesis of silver nanoparticles and their activity against pathogenic bacteria

In this study, silver nanoparticles (AgNPs) were biosynthesised by using acidophilic actinobacterial SH11 strain isolated from pine forest soil. Isolate SH11 was identified based on 16S rRNA gene sequence to Streptomyces kasugaensis M338-M1T and S. celluloflavus NRRL B-2493T (99.8% similarity, both). Biosynthesised AgNPs were analysed by UV–visible spectroscopy, which revealed specific peak at λ = 420 nm. Transmission electron microscopy analyses showed polydispersed, spherical nanoparticles with a mean size of 13.2 nm, while Fourier transform infrared spectroscopy confirmed the presence of proteins as the capping agents over the surface of AgNPs. The zeta potential was found to be −16.6 mV, which indicated stability of AgNPs. The antibacterial activity of AgNPs from SH11 strain against gram-positive (Staphylococcus aureus and Bacillus subtilis) and gram-negative (Escherichia coli) bacteria was estimated using disc diffusion, minimum inhibitory concentration and live/dead analyses. The AgNPs showed the maximum antimicrobial activity against E. coli, followed by B. subtilis and S. aureus. Further, the synergistic effect of AgNPs in combination with commercial antibiotics (kanamycin, ampicillin, tetracycline) was also evaluated against bacterial isolates. The antimicrobial efficacy of antibiotics was found to be enhanced in the presence of AgNPs.

References

    1. 1)
      • 7. Narasimha, G., Janardhan, A., Alzohairy, M., et al: ‘Extracellular synthesis, characterization and antibacterial activity of silver nanoparticles by Actinomycetes isolative’, Int. J. Nano Dimens., 2013, 4, pp. 7783.
    2. 2)
      • 62. Allahverdiyev, A.M., Kon, K.V., Abamor, E.S., et al: ‘Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents’, Expert Rev. Anti Infect. Ther., 2011, 9, pp. 10351052.
    3. 3)
      • 57. Selvakumar, P., Viveka, S., Prakash, S., et al: ‘Antimicrobial activity of extracellularly synthesized silver nanoparticles from marine derived Streptomyces rochei’, Int. J. Pharm. Biol. Sci., 2012, 3, pp. 188197.
    4. 4)
      • 45. Basavaraja, S., Balaji, S.D., Lagashetty, A., et al: ‘Extracellular biosynthesis of silver nanoparticle using the fungus Fusarium semitectum’, Mater. Res. Bull., 2008, 45, pp. 11641170.
    5. 5)
      • 3. Selvarani, M., Prema, P.: ‘Synergistic antibacterial evaluation of commercial antibiotics combined with nanoiron against human pathogens’, Int. J. Pharm. Sci. Rev. Res., 2013, 27, pp. 183190.
    6. 6)
      • 5. Probhu, S., Poulose, E.K.: ‘Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects’, Int. Nano Lett., 2012, 2, p. 32.
    7. 7)
      • 22. Ruden, S., Hilpert, K., Berditsch, M., et al: ‘Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides’, Antimicrob. Agents Chemother., 2009, 53, pp. 35383540.
    8. 8)
      • 4. Zarina, A., Nanda, A.: ‘Combined efficacy of antibiotics and biosynthesized silver nanoparticles from Streptomyces albaduncus’, Int. J. PharmTech Res., 2014b, 6, pp. 18621869.
    9. 9)
      • 26. Golinska, P., Ahmed, L., Wang, D., et al: ‘Streptacidiphilus durhamensis sp. nov., isolated from a spruce forest soil’, Anton. Van Leeuw., 2013, 104, pp. 199206.
    10. 10)
      • 31. Saitou, N., Nei, M.: ‘The neighbor-joining method: a new method for constructing phylogenetic trees’, Mol. Biol. Evol., 1987, 4, pp. 406425.
    11. 11)
      • 53. Anasane, N., Golinska, P., Wypij, M., et al: ‘Acidophilic actinobacteria synthesised silver nanoparticles showed remarkable activity against fungi-causing superficial mycoses in humans’, Mycoses, 2016, 59, pp. 157166.
    12. 12)
      • 39. Duran, N., Marcato, P.D., Duran, M., et al: ‘Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants’, Appl. Microbiol. Biotechnol., 2011, 90, pp. 16091624.
    13. 13)
      • 11. Saminathan, K.: ‘Biosynthesis of silver nanoparticles using soil Actinomycetes Streptomyces sp.’, Int. J. Curr. Microbiol. Appl. Sci., 2015, 4, pp. 10731083.
    14. 14)
      • 15. Potara, M., Bawaskar, M., Simon, T., et al: ‘Biosynthesized silver nanoparticles performing as biogenic SERS-nanotags for investigation of C26 colon carcinoma cells’, Colloids Surf. B, Biointerfaces, 2015, 133, pp. 296303, doi:http://dx.doi.org/doi:10.1016/j.colsurfb.2015.06.024.
    15. 15)
      • 41. Kumar, C.G., Mamidyala, S.K.: ‘Extracellular synthesis of silver nano-particles using culture supernatant of Pseudomonas aeruginosa’, Colloids Surf. B, Biointerfaces, 2011, 84, pp. 462466.
    16. 16)
      • 52. Gaikwad, S., Ingle, A., Gade, A., et al: ‘Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3’, Int. J. Nanomed., 2013, 8, pp. 43034314.
    17. 17)
      • 1. Shirley, A., Dayanand, B., Sreedhar, S., et al: ‘Antimicrobial activity of silver nanoparticle synthesized from novel Streptomyces sp.’, Dig. J. Nanomater. Biostr., 2010, 5, pp. 447451..
    18. 18)
      • 6. Manivasagan, P., Venkatesan, J., Senthilkumar, K., et al: ‘Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1’, Bio. Med. Res. Int., 2013, 2013, pp. 19http://dx.doi.org/10.1155/2013/287638.
    19. 19)
      • 23. Dar, M.A., Ingle, A., Rai, M.: ‘Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics’, Nanomed. Nanotechnol. Biol. Med., 2013, 9, pp. 105110.
    20. 20)
      • 42. Chauhan, R., Kumar, A., Abraham, J.: ‘A biological approach to the synthesis of silver nanoparticles with Streptomyces sp. JAR1 and its antimicrobial activity’, Sci. Pharm., 2013, 81, pp. 607621.
    21. 21)
      • 58. Singh, R., Wagh, P., Wadhwani, S., et al: ‘Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics’, Int. J. Nanomed., 2013, 8, pp. 42774290.
    22. 22)
      • 38. Otari, S.V., Patil, R.M., Nadaf, N.H., et al: ‘Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp.’, Mater. Lett., 2012, 72, pp. 9294.
    23. 23)
      • 37. Golinska, P., Wypij, M., Rathod, D., et al: ‘Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities’, J. Basic Microbiol., 2015, 55, pp. 116.
    24. 24)
      • 35. Birla, S.S., Tiwari, V.V., Gade, A.K., et al: ‘Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus’, Lett. Appl. Microbiol., 2009, 48, pp. 173179.
    25. 25)
      • 20. Mallevre, F., Fernandes, T.F., Aspray, T.J.: ‘Pseudomonas putida biofilm dynamics following a single pulse of silver nanoparticles’, Chemosphere, 2016, 153, pp. 356364.
    26. 26)
      • 51. Prakasham, R.S., Buddana, S.K., Yannam, S.K., et al: ‘Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus’, J. Microbiol. Biotech., 2012, 22, pp. 614621.
    27. 27)
      • 54. Rai, M., Yadav, A., Gade, A.: ‘Silver nanoparticles as a new generation of antimicrobials’, Biotechnol. Adv., 2009, 27, pp. 7683.
    28. 28)
      • 19. Shanmugaiah, V., Harikrishnan, H., Al-Harbi, N.S., et al: ‘facile synthesis of silver nanoparticles using Streptomyces sp.VSMGT1014 and their antimicrobial efficiency’, Dig. J. Nanomater. Biostr., 2015, 10, pp. 179187.
    29. 29)
      • 18. Banu, A., Rathod, V.: ‘Biosynthesis of monodispersed silver nanoparticles and their activity against Mycobacterium tuberculosis’, J. Nanomed. Biotherapeutic Discov., 2013, 3, p. 110.
    30. 30)
      • 60. Ghosh, S., Patil, S., Ahire, M., et al: ‘Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents’, Int. J. Nanomed., 2012, 7, pp. 483496.
    31. 31)
      • 8. Golinska, P., Wypij, M., Ingle, A.P., et al: ‘Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity’, Appl. Microbiol. Biotechnol., 2014, 98, pp. 80838097.
    32. 32)
      • 49. Abdeen, S., Geo, S., Sukanya, S., et al: ‘Biosynthesis of silver nanoparticles from Actinomycetes for therapeutic applications’, Int. J. Nano Dimens., 2014, 5, pp. 155162.
    33. 33)
      • 55. Rai, M.K., Deshmukh, S.D., Ingle, A.P., et al: ‘Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria’, J. Appl. Microbiol., 2012, 112, pp. 841852.
    34. 34)
      • 27. Shirling, E.B., Gottlieb, D.: ‘Methods for characterization of Streptomyces sp.’, Int. J. Syst. Bacteriol., 1966, 16, pp. 313340.
    35. 35)
      • 48. Sukanya, M.K., Saju, K.A., Praseetha, P.K., et al: ‘Therapeutic potential of biologically reduced silver nanoparticles from actinomycete cultures’, J. Nanosci., 2013, 2013, pp. 18, http://dx.doi.org/10.1155/2013/940719.
    36. 36)
      • 34. Raheman, F., Shivaji, D., Ingle, A., et al: ‘Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L)’, Nano Biomed. Eng., 2011, 3, pp. 174178.
    37. 37)
      • 47. Sadhasivam, S., Shanmugam, P., Yun, K.: ‘Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms’, Colloids Surf. B, Biointerfaces, 2010, 81, pp. 358362.
    38. 38)
      • 40. Rai, M., Ingle, A., Gade, A., et al: ‘Synthesis of silver nanoparticles by Phoma gardeniae and in vitro evaluation of their efficacy against human disease-causing bacteria and fungi’, IET Nanobiotech., 2015a, 9, pp. 7175.
    39. 39)
      • 24. McShan, D., Zhang, Y., Deng, H., et al: ‘Synergistic antibacterial effect of silver nanoparticles combined with ineffective antibiotics on drug resistant Salmonella typhimurium DT104’, J. Environ. Sci. Health C. Environ. Carcinog. Ecotoxicol. Rev., 2015, 33, pp. 369384.
    40. 40)
      • 56. Morones, J.R., Elechiguerra, J.L., Camacho, A., et al: ‘The bactericidal effect of silver nanoparticles’, Nanotechnol., 2005, 16, pp. 23462353.
    41. 41)
      • 36. Alani, F., Murray, M.Y., William, A.: ‘Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigates’, World J. Microbiol. Biotechnol., 2012, 28, pp. 10811086.
    42. 42)
      • 30. Tamura, K., Stecher, G., Peterson, D., et al: ‘MEGA6: molecular evolutionary genetics analysis version 6.0’, Mol. Biol. Evol., 2013, 30, pp. 27252729.
    43. 43)
      • 2. Zarina, A., Nanda, A.: ‘Green approach for synthesis of silver nanoparticles from marine Streptomyces- MS 26 and their antibiotic efficacy’, J. Pharm. Sci. Res., 2014, 6, pp. 321327.
    44. 44)
      • 46. Karthik, L., Kumar, A., Kirthi, V.A., et al: ‘Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application’, Bioprocess Biosyst. Eng., 2014, 37, pp. 261267.
    45. 45)
      • 43. Gole, A., Dash, C., Ramakrishnan, V., et al: ‘Pepsin-gold colloid conjugates: preparation, characterization and enzymatic activity’, Langmuir, 2001, 17, pp. 16741679.
    46. 46)
      • 10. Singh, R., Shedbalkar, U.U., Wadhwani, S.W., et al: ‘Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications’, Appl. Microbiol. Biotechnol., 2015, 99, pp. 45794593.
    47. 47)
      • 21. Li, P., Li, J., Wu, C., et al: ‘Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles’, Nanotechnology, 2005, 16, pp. 19121917.
    48. 48)
      • 16. Franci, G., Falanga, A., Galdiero, S., et al: ‘Silver nanoparticles as potential antibacterial agents’, Molecules, 2015, 20, pp. 88568874.
    49. 49)
      • 9. Salunkhe, G.R., Ghosh, S., Santosh Kumar, R.J., et al: ‘Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control’, Int. J. Nanomed., 2014, 27, pp. 263553.
    50. 50)
      • 61. Chauhan, R., Reddy, A., Abraham, J.: ‘Biosynthesis of silver and zinc oxide nanoparticles using Pichia fermentans JA2 and their antimicrobial property’, Appl. Nanosci., 2015, 5, pp. 6371.
    51. 51)
      • 13. Pan, T., He, H., Li, C., et al: ‘Streptomyces daqingensis sp. nov., isolated from saline-alkaline soil’, Int. J. Syst. Evol. Microbiol., 2016, 66, pp. 13581363, doi: 10.1099/ijsem.0.000887.
    52. 52)
      • 17. Rai, M., Kon, K., Ingle, A., et al: ‘Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects’, Appl. Microbiol. Biotechnol., 2014, 98, pp. 19511961.
    53. 53)
      • 59. Manikprabhu, D., Lingappa, K.: ‘Antibacterial activity of silver nanoparticles against methicillin-resistant Staphylococcus aureus synthesized using model Streptomyces sp. pigment by photo-irradiation method’, J. Pharm. Res., 2013, 6, pp. 255260.
    54. 54)
      • 32. Felsenstein, J.: ‘Confidence limits on phylogenies: an approach using the bootstrap’, Evol., 1985, 39, pp. 783791.
    55. 55)
      • 12. Bull, A.T.: ‘Actinobacteria from the extremobiosphere’, in Horikoshi, K., Antranikian, G., Bull, A.T., Robb, F., Stetter, K.O. (eds.): ‘Extremophiles handbook’ (Springer, New York, 2010), pp. 315.
    56. 56)
      • 50. Rai, M., Ingle, A., Gade, A., et al: ‘Three-Phoma spp. synthesized novel silver nanoparticles that possess excellent antimicrobial efficacy’, IET Nanobiotechnol., 2015, 9, pp. 280287, doi: 10.1049/iet-nbt.2014.0068.
    57. 57)
      • 29. Kim, O.S., Cho, Y.J., Lee, K., et al: ‘Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence data-base with phylotypes that represent uncultured species’, Int. J. Syst. Evol. Microbiol., 2012, 62, pp. 716721.
    58. 58)
      • 44. Balaji, D.S., Basavaraja, S., Deshpande, R., et al: ‘Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus’, Colloids Surf. B, Biointerfaces, 2001, 68, pp. 8892.
    59. 59)
      • 28. Golinska, P., Kim, B.-Y., Dahm, H., et al: ‘Streptacidiphilus hamsterleyensis sp. nov., isolated from a spruce forest soil’, Anton. Van Leeuw., 2013b, 104, pp. 965972.
    60. 60)
      • 33. Fitch, W.M.: ‘Toward defining the course of evolution: minimum change for a specific tree topology’, Syst. Zool., 1971, 20, pp. 406416.
    61. 61)
      • 14. Gutierrez, F.M., Olive, P.L., Banuelos, A., et al: ‘Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles’, Nanomedicine, 2010, 6, pp. 681688.
    62. 62)
      • 25. Küster, E., Williams, S.T.: ‘Selection of media for isolation of Streptomycetes’, Nature, 1964, 202, pp. 928929.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0112
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0112
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address