Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Characterisation of sol–gel method synthesised MgZnFe2O4 nanoparticles and its cytotoxic effects on breast cancer cell line, MDA MB-231 in vitro

In this study, nanocrystalline magnesium zinc ferrite nanoparticles were successfully prepared by a simple sol–gel method using copper nitrate and ferric nitrate as raw materials. The calcined samples were characterised by differential thermal analysis/thermogravimetric analysis, Fourier transform infrared spectroscopy and X-ray diffraction. Transmission electron microscopy revealed that the average particle size of the calcined sample was in a range of 17–41 nm with an average of 29 nm and has spherical size. A cytotoxicity test was performed on human breast cancer cells (MDA MB-231) and (MCF-7) at various concentrations starting from (0 µg/ml) to (800 µg/ml). The sample possessed a mild toxic effect toward MDA MB-231 and MCF-7 after being examined with MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide) assay for up to 72 h of incubation. Higher reduction of cells viability was observed as the concentration of sample was increased in MDA MB-231 cell line than in MCF-7. Therefore, further cytotoxicity tests were performed on MDA MB-231 cell line.

References

    1. 1)
      • 4. Bhattacharya, U., Darshane, V.S.: ‘Spin glass behaviour of the system CoFe2–x GaxO4’, J. Mater. Chem., 1993, 3, (3), p. 299.
    2. 2)
      • 8. Yu, S.-H., Yoshimura, M.: ‘Direct fabrication of ferrite MFe2O4 (M=Zn, Mg)/Fe composite thin films by soft solution processing’, Chem. Mater., 2000, 12, (12), pp. 38053810.
    3. 3)
      • 33. Villanueva, A., Cañete, M., Roca, A.G., et al: ‘The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells’, Nanotechnology, 2009, 20, (11), p. 115103.
    4. 4)
      • 2. Novelo, F., Valenzuela, R.: ‘On the reaction kinetics of nickel ferrite from iron and nickel oxides’, Mater. Res. Bull., 1995, 30, (3), pp. 335340.
    5. 5)
      • 6. ‘INIS Collection Search – Single Result. Available at https://www.inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=16003983.
    6. 6)
      • 10. Kanagesan, S., Hashim, M., Tamilselvan, S., et al: ‘Characteristics and cytotoxicity of magnetic nanoparticles on breast cancer’, J. Opt. Biomed. Mater., 2014, 6, (2), pp. 4150.
    7. 7)
      • 22. Rahman, I.A., Padavettan, V.: ‘Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica–polymer nanocomposites – areview’, J. Nanomater., 2012, 2012 p. 15, Article ID 132424.
    8. 8)
      • 26. Sivakumar, P., Ramesh, R., Ramanand, A., et al: ‘Synthesis and study of magnetic properties of NiFe2O4 nanoparticles by PVA assisted auto-combustion method’, J. Mater. Sci. Mater. Electron., 2011, 23, (5), pp. 10111015.
    9. 9)
      • 24. Vijayakumar, P., Pandian, M.S., Mukhopadhyay, S., et al: ‘Synthesis and characterizations of large surface tungsten oxide nanoparticles as a novel counter electrode for dye-sensitized solar cell’, J. Sol–Gel Sci. Technol., 2015, 75, (3), pp. 487494.
    10. 10)
      • 23. Rahman, I.A., Padavettan, V.: ‘Synthesis of silica nanoparticles by sol–gel: size-dependent properties, surface modification, and applications in silica–polymer nanocomposites – a review’, J. Nanomater., 2012, 2012, pp. 115.
    11. 11)
      • 31. Campbell, M.J., Hamilton, B., Shoemaker, M., et al: ‘Antiproliferative activity of Chinese medicinal herbs on breast cancer cells in vitro’, Anticancer Res.., 2002, 22, (6C), pp. 38433852.
    12. 12)
      • 25. Chen, L., Shang, Y., Liu, H., et al: ‘Synthesis of CuS nanocrystal in cationic gemini surfactant W/O microemulsion’, Mater. Des., 2010, 31, (4), pp. 16611665.
    13. 13)
      • 17. ‘Targeted Cancer Therapies Fact Sheet – National Cancer Institute. Available at http://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet.
    14. 14)
      • 29. Raghuvanshi, S., Satalkar, M., Tapkir, P., et al: ‘On the structural and magnetic study of Mg1−xZnxFe2O4’, J. Phys. Conf. Ser., 2014, 534, (4), p. 012031.
    15. 15)
      • 30. Xin, R., Ren, F., Leng, Y.: ‘Synthesis and characterization of nano-crystalline calcium phosphates with EDTA-assisted hydrothermal method’, Mater. Des., 2010, 31, (4), pp. 16911694.
    16. 16)
      • 27. Yahya, N., Aziz, A.A., Daud, H., et al: ‘Synthesis and characterization of magnesium zinc ferrites as EM source’. 2008.
    17. 17)
      • 36. Abu, N., Akhtar, M.N., Yeap, S.K., et al: ‘Flavokawain A induces apoptosis in MCF-7 and MDA-MB231 and inhibits the metastatic process in vitro’, PLoS One, 2014, 9, (10), p. e105244.
    18. 18)
      • 1. De Jong, W.H., Borm, P.J.A.: ‘Drug delivery and nanoparticles: applications and hazards.’, Int. J. Nanomed., 2008, 3, (2), pp. 133149.
    19. 19)
      • 7. Deng, H., Chen, H., Li, H.: ‘Synthesis of crystal MFe2O4 (M=Mg, Cu, Ni) microspheres’, Mater. Chem. Phys., 2007, 101, (2–3), pp. 509513.
    20. 20)
      • 37. Wieder, T.: ‘Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor–ligand interaction and occurs downstream of caspase-3’, Blood, 2001, 97, (5), pp. 13781387.
    21. 21)
      • 3. Bercoff, P.G., Bertorello, H.R.: ‘Exchange constants and transfer integrals of spinel ferrites’, J. Magn. Magn. Mater., 1997, 169, (3), pp. 314322.
    22. 22)
      • 20. Perlstein, B., Ram, Z., Daniels, D., et al: ‘Convection-enhanced delivery of maghemite nanoparticles: increased efficacy and MRI monitoring’, Neuro-Oncol., 2008, 10, (2), pp. 153161.
    23. 23)
      • 21. Wu, Z., Li, S., Wan, J., et al: ‘Cr(VI) adsorption on an improved synthesised cross-linked chitosan resin’, J. Mol. Liq., 2012, 170, pp. 2529.
    24. 24)
      • 14. Verma, S., Chand, J., Batoo, K.M., et al: ‘Structural, magnetic and Mössbauer spectral studies of aluminum substituted Mg–Mn–Ni ferrites (Mg0.2Mn0.5Ni0.3AlyFe2−yO4)’, J. Alloys Compd., 2013, 551, pp. 715721.
    25. 25)
      • 28. Ahmed, A.I., Siddig, M.A., Mirghni, A.A., et al: ‘Structural and optical properties of Mg1-xZnxFe2O4 nano-ferrites synthesized using co-precipitation method’, Sci. Res. Publ., 2015, 4, pp. 4552, no. May.
    26. 26)
      • 15. Kahn, M.L., Zhang, Z.J.: ‘Synthesis and magnetic properties of CoFe[sub 2]O[sub 4] spinel ferrite nanoparticles doped with lanthanide ions’, Appl. Phys. Lett., 2001, 78, (23), p. 3651.
    27. 27)
      • 9. Balaji, N., Begum, K.M.M.S., Anantharaman, N., et al: ‘Absoprtion and desorption of L-phenylalanine on nano-sized magnetic nanoparticle’, J. Eng. Appl. Sci., 2008, 4, pp. 3644.
    28. 28)
      • 38. Al-Qubaisi, M.S., Rasedee, A., Flaifel, M.H., et al: ‘Cytotoxicity of nickel zinc ferrite nanoparticles on cancer cells of epithelial origin’, Int. J. Nanomed., 2013, 8, pp. 24972508.
    29. 29)
      • 19. Sun, C., Lee, J., Zhang, M.: ‘Magnetic nanoparticles in MR imaging and drug delivery’, Adv. Drug Deliv. Rev., 2008, 60, (11), pp. 12521265.
    30. 30)
      • 13. Raghavender, A.T., Kulkarni, R.G., Jadhav, K.M.: ‘Magnetic properties of nanocrystalline Al doped nickel ferrite synthesized by the sol–gel method’, Chin. J. Phys., 2008, 46, (3), pp. 366375.
    31. 31)
      • 5. John Berchmans, L., Kalai Selvan, R., Selva Kumar, P., et al: ‘Structural and electrical properties of Ni1−xMgxFe2O4 synthesized by citrate gel process’, J. Magn. Magn. Mater., 2004, 279, (1), pp. 103110.
    32. 32)
      • 11. Tseng, T.K., Lin, Y.S., Chen, Y.J., et al: ‘A review of photocatalysts prepared by sol–gel method for VOCs removal’, Int. J. Mol. Sci., 2010, 11, (6), pp. 23362361.
    33. 33)
      • 16. Wahajuddin, A.S.: ‘Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers’, Int. J. Nanomed., 2012, 7, pp. 34453471.
    34. 34)
      • 34. Wang, L., Zhang, H., Chen, B., et al: ‘Effect of magnetic nanoparticles on apoptosis and cell cycle induced by wogonin in Raji cells’, Int. J. Nanomed., 2012, 7, pp. 789798.
    35. 35)
      • 35. McIlwain, D.R., Berger, T., Mak, T.W.: ‘Caspase functions in cell death and disease’, Cold Spring Harb. Perspect. Biol., 2013, 5, (4), p. a008656.
    36. 36)
      • 32. Kanagesan, S., Hashim, M., Tamilselvan, S., et al: ‘Sol–gel auto-combustion synthesis of cobalt ferrite and it's cytotoxicity properties’, Dig. J. Nanomater. Biostruct., 2013, 8, (4), pp. 16011610.
    37. 37)
      • 18. Goldberg, M.S., Hook, S.S., Wang, A.Z., et al: ‘Biotargeted nanomedicines for cancer: six tenets before you begin’, Nanomed. (Lond.), 2013, 8, (2), pp. 299308.
    38. 38)
      • 12. Kanagesan, S., Hashim, M., Tamilselvan, S., et al: ‘Cytotoxic effect of nanocrystalline MgFe2O4 particles for cancer cure’, J. Nanomater., 2013, 2013Article ID 865024, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2016.0007
Loading

Related content

content/journals/10.1049/iet-nbt.2016.0007
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address