Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities

The biosynthesis of silver nanoparticles (AgNPs) is substantial for its application in lots of fields. Tomato and grape fruit juices were used as a reducing and capping agents for the biosynthesis of AgNPs. Ultraviolet spectroscopic analysis offered peaks in the range of 396‒420 nm that indicate the production of AgNPs. Fourier transform infrared spectroscopy analysis revealed attachment of different functional groups with Ag ion in both tomato and grape fruit extracts NPs. The X‒ray diffraction analysis confirmed that the synthesised AgNPs have a face centred cubic confirmation. Scanning electron microscopy confirms the size of NPs that varies from 10 to 30 nm. The DPPH free radical scavenging assay, total antioxidant capacity, reducing power assay, total flavonoid contents and total phenolic contents determination confirmed that synthesised AgNPs are potent antioxidant agents; can be used as an effective scavenger of free radicals. Biosynthesised AgNPs also showed good antibacterial activity against Pseudomonas septica, Staphylococcus aureus, Micrococcus luteus, Enterobacter aerogenes, Bacillus subtilis and Salmonella typhi. Protein kinase inhibition activity showed a clear zone which indicates anticancerous potential of biosynthesised AgNPs. The efficacious bioactivities indicate that the tomato and grape derived AgNPs can be used efficiently in pharmaceutical and medical industries.

References

    1. 1)
      • 27. Mitra, B., Vishnudas, D., Sant, S.B., et al: ‘Green-synthesis and characterization of silver nanoparticles by aqueous leaf extracts of Cardiospermum helicacabum leaves’, Drug Invent. Today, 2012, 4, (2), pp. 340344.
    2. 2)
      • 16. Amin, M., Anwar, F., Janjua, M.R., et al: ‘Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum l. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori’, Int. J. Mol. Sci., 2012, 13, pp. 99239941.
    3. 3)
      • 3. Jae, Y.S., Beom, S.K.: ‘Rapid biological synthesis of silver nanoparticles using plant leaf extracts’, Bioprocess Biosyst. Eng., 2009, 32, (1), pp. 7984.
    4. 4)
      • 1. Prabhu, S., Poulose, E.K.: ‘Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects’, Int. Nano Lett., 2012, 2, pp. 110.
    5. 5)
      • 6. Feng, Q.L., Wu, J., Chen, G.Q., et al: ‘A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus’, J. Biomed. Mater. Res., 2000, 52, (4), pp. 662668.
    6. 6)
      • 12. Humaira, F., Komal, K., Muhammad, Z., et al: ‘Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: an in vitro biological and phytochemical investigation’, BMC Complement. Altern. Med., 2015, 15, p. 376.
    7. 7)
      • 25. Susanto, H., Feng, Y., Ulbricht, M.: ‘Fouling behavior during ultrafiltration of aqueous solutions of polyphenolic compounds’, J. Food Eng., 2009, 91, (2), pp. 333340.
    8. 8)
      • 21. Fayaz, A.M., Balaji, K., Kalaichelvan, P.T., et al: ‘Fungal based synthesis of silver nanoparticles – an effect of temperature on the size of particles’, Colloids Surf. B Biointerfaces, 2009, 74, (1), pp. 123126.
    9. 9)
      • 10. Rehman, R., Chaudhary, M.F., Khawar, K., et al: ‘In vitro propagation of Caralluma tuberculata and evaluation of antioxidant potential’, Biologia, 2014, 69, (3), pp. 341349.
    10. 10)
      • 15. Bar, H., Bhui, D.K., Sahoo, P.G., et al: ‘Green synthesis of silver nanoparticles using latex of Jatropha curcas’, Colloids Surf. A Physicochem. Eng. Aspects, 2009, 339, pp. 134139.
    11. 11)
      • 26. Sathyavathi, R., Krishna, M.B., Rao, S.V., et al: ‘Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics’, Adv. Sci. Lett., 2010, 3, (2), pp. 138143.
    12. 12)
      • 17. Vanaja, M., Gnanajobitha, G., Paulkumar, K., et al: ‘Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors’, J. Nano. Struct. Chem., 2013, 3, (17), pp. 18.
    13. 13)
      • 2. Schultz, S., Smith, D.R., Mock, J.J., et al: ‘Single-target molecule detection with nonbleaching multicolor optical immunolabels’, PNAS, 2000, 97, pp. 9961001.
    14. 14)
      • 30. Banerjee, J., Narendhirakannan, R.T.: ‘Biosynthesis of silver nanoparticles from Syzygium cumini (L.) seed extract and evaluation of their in vitro antioxidant activities’, Dig. J. Nanomater. Biostruct., 2011, 6, (3), pp. 961968.
    15. 15)
      • 14. Roy, K., Biswas, S., Banerjee, P.C.: ‘Green synthesis of silver nanoparticles by using grape (Vitis vinifera) fruit extract: characterization of the particles and study of antibacterial activity’, Res. J. Pharm. Biol. Chem. Sci., 2013, 4, (1), pp. 12711278.
    16. 16)
      • 8. Wang, Z.L.: ‘Characterization of nanophase materials’ (Wiley-VCH, Weinheim, Germany, 2000, 1st edn.), pp. 3780.
    17. 17)
      • 7. Matsumura, Y., Yoshikata, K., Kunisaki, S., et al: ‘Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate’, Appl. Environ. Microbiol., 2003, 69, (7), pp. 42784281.
    18. 18)
      • 13. Prakas, R.T.U., Thiagarajan, P.: ‘Syntheses and characterization of silver nanoparticles using Penicillium sp. isolated from soil’, Inter. J. Adv. Sci. Technol., 2012, 1, (2), pp. 137149.
    19. 19)
      • 22. Socrates, G.: ‘Infrared characteristic group frequencies’ (Wiley, New York: USA, 1980, 1st edn.), p. 153.
    20. 20)
      • 19. Jha, A.K., Prasad, K.: ‘Green fruit of chili (Capsicum annum L.) synthesizes nano silver’, Dig. Nanomater. Bios., 2011, 6, (4), pp. 17171723.
    21. 21)
      • 23. Renugadevi, T.S., Gayathri, S.: ‘FTIR and FT-Raman spectral analysis of paclitaxel drugs’, Int. J. Pharm. Sci. Rev. Res., 2010, 2, (2), pp. 106110.
    22. 22)
      • 11. Ali, A., Phull, A.R., Zia, M., et al: ‘Phytotoxicity of river Chenab sediments: in vitro morphological and biochemical response of Brassica napus L’, Nanotechnol. Monit. Manag., 2015, 4, pp. 7484.
    23. 23)
      • 20. Daizy, P.: ‘Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis’, Physica E, 2010, 42, (5), pp. 14171424.
    24. 24)
      • 18. Krishnaraj, C., Ramachandran, R., Mohan, K., et al: ‘Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi’, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 93, pp. 9599.
    25. 25)
      • 5. Kim, J., Kim, J., Kim, J., et al: ‘Characterization of as-synthesized FeCo magnetic nanoparticles by coprecipitation method’, J. Appl. Phys., 2013, 113, (17), p. A313.
    26. 26)
      • 29. Velavan, S., Arivoli, P., Mahadevan, K.: ‘Biological reduction of silver nanoparticles using cassia auriculata flower extract and evaluation of their in vitro antioxidant activities’, Nanosci. Nanotechnol., 2012, 2, (1), pp. 3035.
    27. 27)
      • 9. Bibi, Y., Nisa, S., Chaudhary, F.M., et al: ‘Antibacterial activity of some selected medicinal plants of Pakistan’, BMC Complement. Altern. Med., 2011, 11, (1), p. 52.
    28. 28)
      • 28. Phull, A.R., Abbas, Q., Ali, A., et al: ‘Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata’, Future J. Pharm. Sci., 2016, 2, (1), pp 3136.
    29. 29)
      • 24. O'Coinceanainn, M.O., Astill, C., Schumm, S.: ‘Potentiometric FTIR and NMR studies of the complexation of metals with the aflavin’, Dalton Trans., 2003, 3, (5), pp. 801807.
    30. 30)
      • 4. Rai, M.K., Deshmukh, S.D., Ingle, A.P., et al: ‘Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria’, J. Appl. Microbiol., 2012, 112, (5), pp. 841852.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2015.0099
Loading

Related content

content/journals/10.1049/iet-nbt.2015.0099
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address