access icon free Design of a DNA-based reversible arithmetic and logic unit

Owing to the emergence of better characteristics such as parallelism, low power consumption and data compactness, DNA computing has drawn great attention in recent years. In this study, the authors realise an arithmetic and logic unit (ALU) using deoxyribonucleic acid (DNA). Inputs and outputs of the proposed ALU keep the logical reversibility in computation processes. The proposed ALU is capable of performing four logical (AND, OR, EX-OR and NOT) with three arithmetic (addition, subtraction and multiplication) operations. They use DNA-based multiplexer to carry out final output. Compared to silicon-based computation, the proposed ALU is faster and requires less space and power due to parallelism, replication properties, compactness and formation of DNA strands. However, compared to one existing DNA-based system, fewer signals are required in each step. Besides, another existing DNA-based ALU requires five complex biological steps to compute, whereas the proposed ALU requires three biological steps. Also, the time complexities of that existing system are O(mln2 n) for addition and subtraction operations; O(m) for logical operations and O(m(ln2 n)2) for multiplication operation, while the proposed system has O(1) for logical operations and O(n) for others; here n is the number of bits and m is the number of test tubes for operands.

Inspec keywords: DNA; biocomputing; cellular biophysics; molecular biophysics; biological techniques

Other keywords: DNA strand replication properties; ALU output; ALU arithmetic operations; ALU input; DNA computing power consumption; DNA strand formation; silicon-based computation; arithmetic and logic unit design; ALU logical operations; DNA-based multiplexer; DNA computing data compactness; DNA strand compactness; DNA computing parallelism; DNA-based system; DNA-based reversible arithmetic and logic unit; deoxyribonucleic acid-based ALU; logical computation process reversibility

Subjects: Physics of subcellular structures; Molecular biophysics; Biocomputing techniques; Biomolecular electronics; Biocomputing theory; Biophysical instrumentation and techniques; Biological engineering and techniques

References

    1. 1)
      • 6. Wood, D.H., Chen, J.: ‘Fredkin gate circuits via recombination enzymes’. Congress on Evolutionary Computation, 2004.
    2. 2)
    3. 3)
      • 17. Lund, S., Dissing, J.: ‘Surprising stability of DNA in stains at extreme humidity and temperature’. Int. Congress Series, , 2004, vol. 1261, pp. 616618.
    4. 4)
      • 8. Thapliyal, H., Srinivas, M.B.: ‘An extension to DNA based Fredkin gate circuits: design of reversible sequential circuits using Fredkin gates’. Optomechatronic Technologies, 2005, pp. 60500O60500O.
    5. 5)
    6. 6)
      • 13. Hamilton, W., Ibers, J.A.: ‘Hydrogen bonding in solids’ (W.A. Benjamin, New York, NY, 1968), pp. 181182.
    7. 7)
      • 23. Brown, T.: ‘Gene cloning and DNA analysis: an introduction’ (John Wiley & Sons, 2010).
    8. 8)
    9. 9)
      • 3. Gupta, V., Parthasarathy, S., Zaki, M.J.: ‘Arithmetic and logic operations with DNA’. Proc. of the Third DIMACS Workshop on DNA Based Computers, 1997, pp. 212220.
    10. 10)
      • 27. Ahmed, T., Sarker, A., Sharif, M., Rashid, S.M., Rahman, M., Babu, H.M.: ‘A novel approach to design a reversible shifter circuit using DNA’.  IEEE 26th Int. SOC Conf. (SOCC), 2013, pp. 256261.
    11. 11)
      • 21. Toffoli, T.: ‘Reversible computing’ (Springer, Berlin Heidelberg, 1980).
    12. 12)
      • 25. Li, S.F.Y.: ‘Capillary electrophoresis: principles, practice and applications’ (Elsevier, 1992).
    13. 13)
      • 30. Green, M.R., Sambrook, J.: ‘Molecular cloning: a laboratory manual’ (Cold Spring Harbor Laboratory Press, New York, 2012).
    14. 14)
    15. 15)
      • 7. Thapliyal, H., Srinivas, M.B.: ‘The need of DNA computing: reversible designs of adders and multipliers using Fredkin gate’. Optomechatronic Technologies, 2005, pp. 605010605010.
    16. 16)
    17. 17)
    18. 18)
      • 9. Sarker, A., Ahmed, T., Rashid, S.M.M., et al: ‘Realization of reversible logic in DNA computing’. IEEE 11th Int. Conf. on Bioinformatics and Bioengineering (BIBE), 2011, pp. 261265.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 4. De Santis, F., Iaccarino, G.: ‘A DNA arithmetic logic unit’, WSEAS Trans. Biol. Biomed., 2004, 1, (4), pp. 436440.
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 20. Yang, G., Song, X., Hung, W.N.N., Perkowski, M.A.: ‘Bi-direction synthesis for reversible circuits’. Proc. IEEE Computer Society Annual Symp. on VLSI, 2005, pp. 1419.
    30. 30)
      • 26. Sarker, A., Sharif, M., Rashid, S.M., Babu, H.M.: ‘Implementation of reversible multiplier circuit using deoxyribonucleic acid’. IEEE 13th Int. Conf. on Bioinformatics and Bioengineering (BIBE), 2013, pp. 14.
    31. 31)
      • 19. Von Neumann, J.: ‘First Draft of a Report on the EDVAC’. The Origins of Digital Computers, 1982, pp. 383392.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2014.0056
Loading

Related content

content/journals/10.1049/iet-nbt.2014.0056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading