access icon free Silver nanoparticles synthesised using plant extracts show strong antibacterial activity

In this study, three plants Populus alba, Hibiscus arboreus and Lantana camara were explored for the synthesis of silver nanoparticles (SNPs). The effect of reaction temperature and leaf extract (LE) concentration of P. alba, H. arboreus and L. camara was evaluated on the synthesis and size of SNPs. The SNPs were characterised by ultra-violet–visible spectroscopy, scanning electron microscopy and atomic force microscopy. The synthesis rate of SNPs was highest with LE of L. camara followed by H. arboreus and P. alba under similar conditions. L. camara LE showed maximum potential of smaller size SNPs synthesis, whereas bigger particles were formed by H. arboreous LE. The size and shape of L. camara LE synthesised SNPs were analysed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). TEM analysis revealed the formation of SNPs of average size 17 ± 9.5 nm with 5% LE of L. camara. The SNPs synthesised by LE of L. camara showed strong antibacterial activity against Escherichia coli. The results document that desired size SNPs can be synthesised using these plant LEs at a particular temperature for applications in the biomedical field.

Inspec keywords: microorganisms; antibacterial activity; X-ray chemical analysis; nanofabrication; atomic force microscopy; scanning electron microscopy; ultraviolet spectra; silver; nanoparticles; visible spectra; nanomedicine; cellular biophysics; particle size; transmission electron microscopy

Other keywords: silver nanoparticle size; plant extracts; H. arboreus; antibacterial activity; scanning electron microscopy; TEM; reaction temperature; ultraviolet-visible spectroscopy; Escherichia coli; atomic force microscopy; EDX; L. camara; Lantana camara; leaf extract concentration; transmission electron microscopy; Hibiscus arboreus; Ag; biomedical field; Populus alba; P. alba

Subjects: Methods of nanofabrication and processing; Optical properties of metals and metallic alloys (thin films, low-dimensional and nanoscale structures); Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Solid surface structure; Low-dimensional structures: growth, structure and nonelectronic properties; Nanotechnology applications in biomedicine; Electromagnetic radiation spectrometry (chemical analysis); Visible and ultraviolet spectra of metals, semimetals, and alloys; Biomedical materials

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 34. Leela, A., Vivekanandan, M.: ‘Tapping the unexploited plant resources for the synthesis of silver nanoparticles’, Afr. J. Biotechnol., 2008, 7, pp. 31623165.
    10. 10)
      • 45. Kim, S.H., Lee, H.S., Ryu, D.S., Choi, S.J., Lee, D.S.: ‘Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli, Korean J. Microbiol. Biotechnol., 2011, 39, pp. 7785.
    11. 11)
      • 46. Raffi, M., Hussain, F., Bhatti, T.M., Akhter, J.I., Hameed, A., Hasan, M.M.: ‘Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224’, J. Mater. Sci. Technol., 2008, 24, pp. 192196.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 7. Chen, M., Yang, Z., Wu, H., Pan, X., Xie, X., Wu, C.: ‘Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel’, Int. J. Nanomed., 2011, 6, pp. 28732877.
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 35. Parashar, V., Parashar, R., Sharma, B., Pandey, A.C.: ‘Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization’, Dig. J. Nanomater. Biostruct., 2009, 4, pp. 4550.
    24. 24)
    25. 25)
      • 38. Kumar, V., Yadav, S.K.: ‘Synthesis of variable shaped gold nanoparticles in one solution using leaf extract of Bauhinia variegata L.’, Dig. J. Nanomater. Biostruct., 2011, 6, pp. 16851693.
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
      • 47. Ghosh, B., Ramamoorthy, D.: ‘Effects of silver nanoparticles on Escherichia coli and its implications’, Int. J. Chem. Sci., 2010, 8, pp. S31S40.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2014.0021
Loading

Related content

content/journals/10.1049/iet-nbt.2014.0021
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading