access icon free Molecular dynamic simulation of Ca2+-ATPase interacting with lipid bilayer membrane

In biomedical and drug delivery treatments, protein Ca2+-ATPase in the lipid bilayer (plasma) membrane plays a key role by reducing multidrug resistance of the cancerous cells. The lipid bilayer membrane and the protein Ca2+-ATPase were simulated by utilising the Gromacs software and by applying the all-atom/united atom and coarse-grained models. The initial structure of Ca2+-ATPase was derived from X-ray diffraction and electron microscopy patterns and was placed in a simulated bilayer membrane of dipalmitoylphosphatidylcholine. The conformational changes were investigated by evaluating the root mean square deviation, root mean square fluctuation, order parameter, diffusion coefficients, partial density, thickness and area per lipid.

Inspec keywords: molecular configurations; drug delivery systems; lipid bilayers; molecular dynamics method; proteins; molecular biophysics; biomembranes

Other keywords: multidrug resistance; diffusion coefficients; area per lipid; partial density; order parameter; dipalmitoylphosphatidylcholine; conformational changes; ATPase; biomedical treatments; plasma membrane; electron microscopy patterns; mean square deviation; root mean square fluctuation; cancerous cells; lipid bilayer membrane; Gromacs software; coarse grained models; X-ray diffraction; thickness; drug delivery treatments; protein; molecular dynamic simulation

Subjects: Biomolecular structure, configuration, conformation, and active sites; Cellular biophysics; Biomolecular interactions, charge transfer complexes; Natural and artificial biomembranes; Biomolecular dynamics, molecular probes, molecular pattern recognition

References

    1. 1)
      • 26. Hockney, R.W., Eastwood, J.W.: ‘Computer simulation using particles’ (Taylor & Francis, Bristol, UK, 1989).
    2. 2)
    3. 3)
    4. 4)
      • 5. Talarico, E.F.Jr.,, Kennedy, B.G., Marfurt, C.F., Loeffler, K.U., Mangini, N.J.: ‘Expression and immunolocalization of plasma membrane calcium ATPase isoforms in human corneal epithelium’, Mol. Vis., 2005, 11, pp. 169178.
    5. 5)
      • 25. Frenkel, D., Smit, B.: ‘Understanding molecular simulation: from algorithms to applications’ (Academic Press, San Diego, USA, 2001, 2nd edn.).
    6. 6)
      • 4. Carafoli, E.: ‘Calcium pump of the plasma membrane’, Physiol. Rev., 1991, 71, (1), pp. 129153.
    7. 7)
      • 14. Lipid Book’, http://lipidbook.bioch.ox.ac.uk.
    8. 8)
    9. 9)
      • 19. Monticelli, L., Kandasamy, S.K., Periole, X., Larson, R.G., Tieleman, D.P., Marrink, S.: ‘The MARTINI coarse-grained force field: extension to proteins’, J. Chem. Theory Comput., 2008, 4, (5), pp. 819834.
    10. 10)
    11. 11)
      • 22. Berendsen, H.J.C., Postma, J.P.M., Vangunsteren, W.F., Hermans, J.: ‘Interaction models for water in relation to protein hydration’ (D. Reidel, Netherlands, 1981).
    12. 12)
      • 8. Dror, R.O., Jensen, M., Shaw, D.E.: ‘Elucidating membrane protein function through long-timescale molecular dynamics simulation’. Int. Conf. IEEE EMBS, Minneapolis, Minnesota, USA, September 2009, pp. 23402342.
    13. 13)
    14. 14)
    15. 15)
      • 33. Law, R.J., Capener, C.E., Bond, P.J., et al: ‘Relationship of protein structure quality with stability and mechanistic determination in molecular dynamics simulation of membrane proteins’ (Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, Oxford, UK, 2005).
    16. 16)
    17. 17)
      • 12. Wang, Z.J., Deserno1, M.: ‘Systematic implicit solvent coarse-graining of bilayer membranes: lipid and phase transferability of the force field’, New J. Phys., 2010, 12, 095004.
    18. 18)
      • 20. ‘Coarse Grain Force Field for Biomolecular Simulations’, http://md.chem.rug.nl/cgmartini/.
    19. 19)
      • 2. Strehler, E.E., Zacharias, D.A.: ‘Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps’, Physiol. Rev., 2007, 81, (1), pp. 2150.
    20. 20)
    21. 21)
    22. 22)
      • 1. Jensen, T., Buckby, L.E., Empson, R.M.: ‘Expression of plasma membrane Ca2+ ATPase family members and associated synaptic proteins in acute and cultured organotypic hippocampal slices from rat’, Brain Res. Dev. Brain Res., 2004, 152, (2), pp. 129136.
    23. 23)
    24. 24)
      • 17. Marrink, S.J., de Vries, A.H., Mark, A.E.: ‘Coarse-grained model for semiquantitative lipid simulations’, J. Phys. Chem. B, 2004, 108, (2), pp. 750760.
    25. 25)
      • 18. Marrink, S.J., Risselada, H.J., Yefimov, S., Tieleman, D.P., de Vries, A.H.: ‘The MARTINI force field: coarse grained model for biomolecular simulations’, J. Phys. Chem. B, 2007, 111, (27), pp. 78127824.
    26. 26)
    27. 27)
      • 31. Mazzitelli, C.L.: ‘Electrospray ionization tandem mass spectrometric techniques for the analysis of drug/DNA complexes’ (ProQuest, Austin, 2007), chapter 6.
    28. 28)
      • 32. Siuda, I.: ‘Coarse grained molecular dynamics with domain movements of large proteins’. PhD thesis, Department of Molecular Biology, Bioinformatics Research Center, Membrane Pumps in Cells and Disease, Aarhus University, Denmark, 2010.
    29. 29)
    30. 30)
    31. 31)
      • 23. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: ‘A smooth particle mesh Ewald method’, J. Chem. Phys., 1995, 103, (19), pp. 85778593.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
      • 27. Allen, M.P., Tildesley, D.J.: ‘Computer simulation of liquids’ (Oxford University Press, Oxford, USA, 1989).
    36. 36)
      • 3. Siegel, G.J., Agranoff, B.W., Albers, R.W., Fisher, S.K., Uhler, M.D.: ‘Basic neurochemistry: molecular, cellular, and medical aspects’ (Lippincott-Raven, Philadelphia, 1999).
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
      • 15. Computational Science and Engineering Department (CSE)’, http://www.stfc.ac.uk/cse/default.aspx.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2013.0073
Loading

Related content

content/journals/10.1049/iet-nbt.2013.0073
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading