access icon free Boron nitride nanotube-based biosensing of various bacterium/viruses: continuum modelling-based simulation approach

In this study, the feasibility of single walled boron nitride nanotube (SWBNNT)-based biosensors has been ensured considering the continuum modelling-based simulation approach, for mass-based detection of various bacterium/viruses. Various types of bacterium or viruses have been taken into consideration at the free-end of the cantilevered configuration of the SWBNNT, as a biosensor. Resonant frequency shift-based analysis has been performed with the adsorption of various bacterium/viruses considered as additional mass to the SWBNNT-based sensor system. The continuum mechanics-based analytical approach, considering effective wall thickness has been considered to validate the finite element method (FEM)-based simulation results, based on continuum volume-based modelling of the SWBNNT. As a systematic analysis approach, the FEM-based simulation results are found in excellent agreement with the analytical results, to analyse the SWBNNTs for their wide range of applications such as nanoresonators, biosensors, gas-sensors, transducers and so on. The obtained results suggest that by using the SWBNNT of smaller size the sensitivity of the sensor system can be enhanced and detection of the bacterium/virus having mass of 4.28 × 10−24 kg can be effectively performed.

Inspec keywords: finite element analysis; gas sensors; microorganisms; continuum mechanics; boron compounds; nanotube devices; nanosensors; biosensors

Other keywords: boron nitride nanotube-based biosensing; adsorption; effective wall thickness; finite element method; continuum volume-based modelling; gas-sensors; continuum mechanics-based analytical approach; FEM-based simulation results; nanoresonators; single walled boron nitride nanotube; bacterium; SWBNNT-based biosensors; mass-based detection; systematic analysis approach; resonant frequency shift-based analysis; transducers; continuum modelling-based simulation approach; viruses; BN; cantilevered configuration

Subjects: Micromechanical and nanomechanical devices and systems; Sensing and detecting devices; Biosensors; Chemical sensors; MEMS and NEMS device technology; Chemical sensors; Fullerene, nanotube and related devices; Biosensors; Finite element analysis; Microsensors and nanosensors

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 6. Hood, L., Heath, J.R., Phelps, M.E., Lin, B.: ‘Systems biology and new technologies enable predictive and preventative medicine’, Science, 2004, 306, pp. 640643 (doi: 10.1126/science.1104635).
    20. 20)
      • 5. Arlett, J., Myers, E., Roukes, M.: ‘Comparative advantages of mechanical biosensors’, Nat. Nanotechnol., 2011, 6, pp. 203215 (doi: 10.1038/nnano.2011.44).
    21. 21)
      • 21. Fraenkel-Conrat, H.: ‘The viruses: catalogue, characterization, and classification’ (Plenum, New York, 1985).
    22. 22)
      • 7. Islam, M.S., Kouzani, A.Z., Dai, X.J., Michalski, W.K.: ‘Modeling and comparative analysis of carbon nanotube and boron nitride nanotube cantilever biosensors’, Adv. Mater. Res., 2011, 159, pp. 650655 (doi: 10.4028/www.scientific.net/AMR.159.650).
    23. 23)
      • 1. D'Orazio, P.: ‘Biosensors in clinical chemistry’, Clin. Chim. Acta, 2011, 412, pp. 17491761 (doi: 10.1016/j.cca.2011.06.025).
    24. 24)
      • 20. Akin, J.E.: ‘Finite elements’ (Butterworth-Heinemann, 2005), pp. A.2.1–A.2.5.
    25. 25)
      • 17. Panchal Mitesh, B., Upadhyay, S.H., Harsha, S.P.: ‘Vibration analysis of single walled boron nitride nanotube based nanoresonators’, J. Nanotechnol. Eng. Med. Trans. ASME, 2013, 3, (3), pp. 031004 1031004 5 (doi: 10.1115/1.4007696).
    26. 26)
      • 2. Tothill, I.E.: ‘Biosensors for cancer markers diagnosis’, Semin. Cell Dev. Biol., 2009, 20, pp. 5562 (doi: 10.1016/j.semcdb.2009.01.015).
    27. 27)
      • 19. Joshi, A.Y., Harsha, S.P., Sharma, S.C.: ‘Vibration signature analysis of single walled carbon nanotube based nanomechanical sensors’, Phys. E, 2010, 42, pp. 21152123 (doi: 10.1016/j.physe.2010.03.033).
    28. 28)
      • 22. Gunsalus, I.C., Stanier, R.I.: ‘The bacteria: a treatise on structure and function’ (Academic, New York, 1960).
    29. 29)
      • 12. Elishakoff, I., Versaci, C., Muscolino, G.: ‘Clamped-free double walled carbon nanotube-based mass sensor’, Acta Mech., 2011, 219, pp. 2943 (doi: 10.1007/s00707-010-0435-1).
    30. 30)
      • 4. Tamayo, J., Kosaka, P.M., Ruz, J.J., Paulo, A.S., Calleja, M.: ‘Biosensors based on nanomechanical systems’, Chem. Soc. Rev., 2013, 42, pp. 12871311 (doi: 10.1039/c2cs35293a).
    31. 31)
      • 8. Chopra, N.G., Zettl, A.: ‘Measurement of the elastic modulus of a multi wall boron nitride nanotube’, Solid State Commun., 1998, 105, (5), pp. 297300 (doi: 10.1016/S0038-1098(97)10125-9).
    32. 32)
      • 13. Gupta, A., Joshi, A.Y., Sharma, S.C., Harsha, S.P.: ‘Dynamic analysis of fixed-free single walled carbon nanotube based biosensors because of various viruses’, IET Nanobiotechnol., 2012, 6, (3), pp. 115121 (doi: 10.1049/iet-nbt.2011.0057).
    33. 33)
      • 15. Chowdhury, R., Wang, C.Y., Adhikari, S., Scarpa, F.: ‘Vibration and symmetry-breaking of boron nitride nanotubes’, Nanotechnology, 2010, 21, p. 365702 (doi: 10.1088/0957-4484/21/36/365702).
    34. 34)
      • 10. Ciofani, G., Danti, S., D'Alessandro, D., Moscato, S., Menciassi, A.: ‘Assessing cytotoxicity of boron nitride nanotubes: interference with the MTT assay’, Biochem. Biophys. Res. Commun., 2010, 394, (2), pp. 405411 (doi: 10.1016/j.bbrc.2010.03.035).
    35. 35)
      • 16. Panchal Mitesh, B., Upadhyay, S.H., Harsha, S.P.: ‘Mass detection using single walled boron nitride nanotube as a nanomechanical resonator’, NANO: Brief Rep. Rev., 2012, 7, (4), pp. 1250029 11250029 11 (doi: 10.1142/S1793292012500294).
    36. 36)
      • 18. Timoshenko, S.P., Gere, J.M.: ‘Theory of elastic stability’ (McGraw-Hill, 1961).
    37. 37)
      • 11. Elishakoff, I., Versaci, C., Maugeri, N., Muscolino, G.: ‘Clamped-free single-walled carbon nanotube-based mass sensor treated as Bernoulli-Euler beam’, J. Nanotechnol. Eng. Med., 2011, 2, pp. 021001/1021001/8 (doi: 10.1115/1.4003734).
    38. 38)
      • 3. Justino, C.I.L., Rocha-Santos, T.A., Duarte, A.C.: ‘Review of analytical figures of merit of sensors and biosensors in clinical applications’, Trends. Anal. Chem., 2010, 29, pp. 11721183 (doi: 10.1016/j.trac.2010.07.008).
    39. 39)
      • 14. Chowdhury, R., Adhikari, S.: ‘Boron-nitride nanotubes as zeptogram-scale biosensors: theoretical Investigations’, IEEE Trans. Nanotechnol., 2011, 10, (4), pp. 659667 (doi: 10.1109/TNANO.2010.2060492).
    40. 40)
      • 9. Ciofani, G., Raffa, V., Menciassi, A., Cuschieri, A.: ‘Boron nitride nanotubes: an innovative tool for nanomedicine’, Nano Today, 2009, 4, (1), pp. 810 (doi: 10.1016/j.nantod.2008.09.001).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2013.0020
Loading

Related content

content/journals/10.1049/iet-nbt.2013.0020
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading