Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Single walled boron nitride nanotube-based biosensor: an atomistic finite element modelling approach

The unprecedented dynamic characteristics of nanoelectromechanical systems make them suitable for nanoscale mass sensing applications. Owing to superior biocompatibility, boron nitride nanotubes (BNNTs) are being increasingly used for such applications. In this study, the feasibility of single walled BNNT (SWBNNT)-based bio-sensor has been explored. Molecular structural mechanics-based finite element (FE) modelling approach has been used to analyse the dynamic behaviour of SWBNNT-based biosensors. The application of an SWBNNT-based mass sensing for zeptogram level of mass has been reported. Also, the effect of size of the nanotube in terms of length as well as different chiral atomic structures of SWBNNT has been analysed for their sensitivity analysis. The vibrational behaviour of SWBNNT has been analysed for higher-order modes of vibrations to identify the intermediate landing position of biological object of zeptogram scale. The present molecular structural mechanics-based FE modelling approach is found to be very effectual to incorporate different chiralities of the atomic structures. Also, different boundary conditions can be effectively simulated using the present approach to analyse the dynamic behaviour of the SWBNNT-based mass sensor. The presented study has explored the potential of SWBNNT, as a nanobiosensor having the capability of zeptogram level mass sensing.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 22. Panchal, M.B., Upadhyay, S.H., Harsha, S.P.: ‘An efficient finite element model for analysis of single walled boron nitride nanotube-based resonant nanomechanical sensors’, NANO: Brief Rep. Rev., 2013, 8, (1), pp. 1350011 116.
    25. 25)
      • 15. Jiang, L.C., Zhang, W.D.: ‘A highly sensitive nonenzymatic glucose sensor based on cuo nanoparticles-modified carbon nanotube electrode’, Biosens. Bioelectron., 2010, 25, (6), pp. 14021407 (doi: 10.1016/j.bios.2009.10.038).
    26. 26)
      • 10. Zhi, C., Bando, Y., Tang, C., Golberg, D.: ‘Immobilization of proteins on boron nitride nanotubes’, J. Am. Chem. Soc., 2005, 127, (49), pp. 17 144145 (doi: 10.1021/ja055989+).
    27. 27)
      • 28. Knobel, R.G.: ‘Mass sensors: weighing single atoms with a nanotube’, Nature Nanotechnol., 2008, 3, pp. 525526 (doi: 10.1038/nnano.2008.250).
    28. 28)
      • 23. Boldrin, L., Scarpa, F., Chowdhury, R., Adhikari, S.: ‘Effective mechanical properties of hexagonal boron nitride nanosheets’, Nanotechnology, 2011, 22, article id 505702 (doi: 10.1088/0957-4484/22/50/505702).
    29. 29)
      • 12. Adhikari, S., Chowdhury, R.: ‘The calibration of carbon nanotube based bio-nano sensors’, J. Appl. Phys., 2010, 107, (12), pp. 124 322 18 (doi: 10.1063/1.3435316).
    30. 30)
      • 21. Dohn, S., Svendsen, W., Boisen, A.: ‘Mass and position determination of attached particles on cantilevered based mass sensors’, Rev. Sci. Instrum., 2007, 78, (10), article id 103303 (doi: 10.1063/1.2804074).
    31. 31)
      • 14. Panchal, M.B., Upadhyay, S.H., Harsha, S.P.: ‘Vibration analysis of single walled boron nitride nanotube based nanoresonators’, J. Nanotechnol. Eng. Med. Trans. SME, 2013, 3, (3), pp. 031004 15.
    32. 32)
      • 2. Cui, Y., Wei, Q.Q., Park, H.K., Lieber, C.M.: ‘Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species’, Science, 2001, 293, p 1289 (doi: 10.1126/science.1062711).
    33. 33)
      • 4. Hong, R., Fischer, N.O., Verma, A., Goodman, C.M., Emrick, T., Rotello, V.M.: ‘Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds’, J. Am. Chem. Soc., 2004, 126, p. 739 (doi: 10.1021/ja037470o).
    34. 34)
      • 5. Mukhopadhyay, S., Scheicher, R.H., Pandey, R., Karna, S.P.: ‘Sensitivity of boron nitride nanotubes toward biomolecules of different polarities’, J. Phy. Chem. Lett., 2011, 2, pp. 24422447 (doi: 10.1021/jz2010557).
    35. 35)
      • 30. Zhang, J., Wang, C.W., Adhikari, S.: ‘Molecular structure-dependent deformations in boron nitride nanostructures subjected to an electric field’, J. Phys. D, Appl. Phys., 2013, 46, (23), pp. 235303 16.
    36. 36)
      • 13. Panchal, M.B., Upadhyay, S.H., Harsha, S.P.: ‘Mass detection using single walled boron nitride nanotube as a nanomechanical resonator’, NANO: Brief Rep. Rev., 2012, 7, (4), pp. 1250029 111.
    37. 37)
      • 17. Joshi, A.Y., Sharma, S.C., Harsha, S.P.: ‘Zeptogram scale mass sensing using single walled carbon nanotube based biosensors’, Sens. Actuator A, Phys., 2011, 168, pp. 275280 (doi: 10.1016/j.sna.2011.04.031).
    38. 38)
      • 8. Hood, L., Heath, J.R., Phelps, M.E., Lin, B.: ‘Systems biology and new technologies enable predictive and preventative medicine’, Science, 2004, 306, pp. 640643 (doi: 10.1126/science.1104635).
    39. 39)
      • 6. Soto-Verdugo, V., Metiu, H., Gwinn, E.: ‘The properties of small Ag clusters bound to DNA bases’, J. Chem. Phys., 2010, 132, article id 195102 (doi: 10.1063/1.3419930).
    40. 40)
      • 19. Farmanzadeh, D., Ghazanfary, S.: ‘The effect of electric field on the interaction of glycine with (6, 0) single walled boron nitride nanotubes’, J. Serb. Chem. Soc., 2012, 77, (0), pp. 114.
    41. 41)
      • 9. Chopra, N.G., Luyken, R.J., Cherrey, K., et al: ‘Boron-nitride nanotubes’, Science, 1995, 269, pp. 966967 (doi: 10.1126/science.269.5226.966).
    42. 42)
      • 3. Benyamini, H., Shulman-Peleg, A., Wolfson, H.J., Belgorodsky, B., Fadeev, L., Gozin, M.: ‘Interaction of c(60) fullerene and carboxyfullerene with proteins: docking and binding site alignment’, Bioconjugate Chem., 2006, 17, p. 378 (doi: 10.1021/bc050299g).
    43. 43)
      • 26. Suryavanshi, A.P., Yu, M.F., Wen, J., Tang, C., Bando, Y.: ‘Elastic modulus and resonance behavior of boron nitride nanotubes’, Appl. Phys. Lett., 2004, 84, (14), pp. 25272529 (doi: 10.1063/1.1691189).
    44. 44)
      • 7. Shewale, V., Joshi, P., Mukhopadhyay, S., et al: ‘First-principles study of nanparticle-biomolecular interactions: anchoring of a (ZnO)12 cluster on nucleobases’, J. Phys. Chem. C, 2011, 115, p 10426 (doi: 10.1021/jp2013545).
    45. 45)
      • 18. Kuang, Z., Kim, S.N., Goodson, W.J.C., Farmer, B.L., Naik, R.R.: ‘Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors’, ACS Nano, 2010, 4, (1), pp. 452458 (doi: 10.1021/nn901365g).
    46. 46)
      • 1. Wong, S.S., Joselevich, E., Woolley, A.T., Cheung, C.L., Lieber, C.M.: ‘Covalently functionalized nanotubes as nanometersized probes in chemistry and biology’, Nature, 1998, 394, p. 52 (doi: 10.1038/27873).
    47. 47)
      • 29. Panchal, M.B., Upadhyay, S.H.: ‘Vibrational analysis of zigzag and armchair fixed-free single walled boron nitride nanotubes: atomistic modeling approach’, Curr. Nanosci., 2013, 9, (2), pp. 254261 (doi: 10.2174/1573413711309020015).
    48. 48)
      • 20. Chowdhury, R., Adhikari, S.: ‘Boron-nitride nanotubes as zeptogram-scale biosensors: theoretical Investigations’, IEEE Trans. Nanotechnol., 2011, 10, (4), pp. 659667 (doi: 10.1109/TNANO.2010.2060492).
    49. 49)
      • 27. Timoshenko, S.P., Gere, J.M.: ‘Theory of elastic stability’ (McGraw-Hill, 1961).
    50. 50)
      • 16. Braun, T., Barwich, V., Ghatkesar, M.K., et al: ‘Micromechanical mass sensors for biomolecular detection in a physiological environment’, Phy. Rev. E, 2005, 72, article id 031907.
    51. 51)
      • 11. Ciofani, G., Raffa, V., Menciassi, A., Cuschieri, A.: ‘Boron nitride nanotubes: an innovative tool for nanomedicine’, Nano Today, 2009, 4, (1), pp. 810 (doi: 10.1016/j.nantod.2008.09.001).
    52. 52)
      • 25. Chopra, N.G., Zettl, A.: ‘Measurement of the elastic modulus of a multi walled boron nitride nanotube’, Solid State Commun., 1998, 105, (5), pp. 297300 (doi: 10.1016/S0038-1098(97)10125-9).
    53. 53)
      • 24. Moon, W.H., Hwang, H.J.: ‘Molecular mechanics of structural properties of boron nitride nanotubes’, Phys. E, 2004, 23, pp. 2630 (doi: 10.1016/j.physe.2003.11.273).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2013.0012
Loading

Related content

content/journals/10.1049/iet-nbt.2013.0012
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address