access icon free Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits

Preparation of protective coating possessing antimicrobial properties is present day need as they increase the shelf life of fruits and vegetables. In the present study, preparation of agar-silver nanoparticle film for increasing the shelf life of fruits is reported. Silver nanoparticles (Ag-NPs) biosynthesised using an extract of Ocimum sanctum leaves, were mixed with agar–agar to prepare an agar-silver nanoparticles (A-AgNp) film. This film was surface-coated over the fruits, Citrus aurantifolium (Thornless lime) and Pyrus malus (Apple), and evaluated for the determination of antimicrobial activity of A-AgNp films using disc diffusion method, weight loss and shelf life of fruits. This study demonstrates that these A-AgNp films possess antimicrobial activity and also increase the shelf life of fruits.

Inspec keywords: agricultural products; protective coatings; food products; silver; antibacterial activity; nanoparticles; organic compounds; food preservation; nanobiotechnology; thin films; diffusion

Other keywords: disc diffusion method; Pyrusmalus; Thornless lime; antimicrobial activity; agar-silver nanoparticle film preparation; fruit shelf life; A-AgNp film; Ag; protective coating preparation; Citrus aurantifolium; surface-coating; Ocimum sanctum leaf; Apple; biosynthesis

Subjects: Agriculture; Biotechnology industry; Engineering materials; Products and commodities; Surface treatment and coating techniques; Industrial processes

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 32. Marzban, G., Puehringer, H., Dey, R., et al: ‘Localisation and distribution of the major allergens in apple fruits’, Plant Sci., 2005, 169, pp. 387394 (doi: 10.1016/j.plantsci.2005.03.027).
    13. 13)
      • 17. Durán, N., Marcato, P.D., De Souza, G.I.H., Alves, O.L., Esposito, E.: ‘Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment’, J. Biomed. Nanotechnol., 2007, 3, pp. 203208 (doi: 10.1166/jbn.2007.022).
    14. 14)
      • 31. Pattabi, R.M., Sridhar, K.R., Gopakumar, S., Vinaychandra, B., Pattabi, M.: ‘Antibacterial potential of silver nanoparticles synthesized by electron beam irradiation’, Int. J. Nanopar. Res., 2010, 3, pp. 5364 (doi: 10.1504/IJNP.2010.033221).
    15. 15)
      • 35. Lima, R., Feitosa, L.O., Ballottin, D., Marcato, P.D., Tasic, L., Durán, N.: ‘Cytotoxicity and genotoxicity of biogenic silver nanoparticles’, J. Phys. Conf. Ser., 429, pp. 012020 (doi: 10.1088/1742-6596/429/1/012020).
    16. 16)
      • 18. Marcato, P.D., Durán, N.: ‘Biogenic silver nanoparticles: applications in medicines and textiles and their health implications’, in Rai, M., Durán, N. (eds.): ‘Metal nanoparticles in microbiology’ (Springer, Germany, 2011), ch. 11, pp. 249267.
    17. 17)
      • 11. Durán, N., Marcato, P.D., Ingle, A., Gade, A., Rai, M.: ‘Fungi mediated synthesis of silver nanoparticles: characterization processes and applications’, in Rai, M., Kövics, G. (Eds.): ‘Progress in mycology’ (Scientific Publishers, Jodhpur, 2010), ch. 16, pp. 425449.
    18. 18)
      • 12. Durán, N., Marcato, P.D., Durán, M., Yadav, A., Gade, A., Rai, M.: ‘Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants’, Appl. Microbiol. Biotechnol., 2011, 190, pp. 16091624 (doi: 10.1007/s00253-011-3249-8).
    19. 19)
      • 34. An, J., Zhang, M., Wang, S., Tang, J.: ‘Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP’. LWT, 2008, pp. 11001107.
    20. 20)
      • 33. USDA 2012 http://ndb.nal.usda.gov/ndb/foods/show/2141?fg=&man=&lfacet=&format=&count=&max=25&offset=&sort=&qlookup=apple (accessed atDecember 23, 2012).
    21. 21)
      • 14. Nasrollahi, A., Pourshamsian, K.H., Mansourkiaee, P.: ‘Antifungal activity of silver nanoparticles on some of fungi’, Int. J. Nano Dimens., 2011, 1, pp. 233239.
    22. 22)
      • 19. Knetsch, M.L.W., Koole, L.H.: ‘New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles’, Polymers, 2011, 3, pp. 340366 (doi: 10.3390/polym3010340).
    23. 23)
      • 6. Jochenweiss, P.T., Mc Clements, D.J.: ‘Functional materials in food nanotechnology’, J. Food Sci., 2006, 71, pp. 107116 (doi: 10.1111/j.1750-3841.2006.00195.x).
    24. 24)
      • 22. Bradford, M.: ‘A rapid and sensitive method for the quantification of protein using the principle of protein-dye binding’, Anal. Biochem., 1997, 72, pp. 248254 (doi: 10.1016/0003-2697(76)90527-3).
    25. 25)
      • 26. Huang, J., Chen, C., He, N., et al: ‘Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf’, Nanotechnology, 2007, 18, pp. 105106.
    26. 26)
      • 23. Durán, N., Marcato, P.D., Alves, O.L., et al: ‘Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process’, J. Nanopart. Res., 2010, 12, pp. 285292 (doi: 10.1007/s11051-009-9606-1).
    27. 27)
      • 13. Rai, M., Yadav, A., Gade, A.: ‘Silver nanoparticles: as a new generation of antimicrobials’, Biotechnol. Adv., 2009, 27, pp. 7683 (doi: 10.1016/j.biotechadv.2008.09.002).
    28. 28)
      • 25. Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., De, S.P., Misra, A.: ‘Green synthesis of silver nanoparticles using latex of Jatropha curcas’, Colloids Surf. A: Physicochem. Eng. Aspects, 2009, 339, pp. 134139 (doi: 10.1016/j.colsurfa.2009.02.008).
    29. 29)
      • 29. Bawaskar, M., Gaikwad, S., Ingle, A., et al: ‘A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum’, Curr. Nanosci., 2010, 6, pp. 376380 (doi: 10.2174/157341310791658919).
    30. 30)
      • 28. Bar, H., Bhui, D.K., Sahoo, G.P., Sarkar, P., Pyne, S., Misra, A.: ‘Green synthesis of silver nanoparticles using seed extract of Jatropha curcas, Colloids Surf. A: Physicochem. Eng. Aspects, 2009, 348, pp. 212216 (doi: 10.1016/j.colsurfa.2009.07.021).
    31. 31)
      • 30. Sanghi, R., Verma, P.: ‘Biomimetic synthesis and characterization of protein capped silver nanoparticles’, Biores. Technol., 2009, 100, pp. 501504 (doi: 10.1016/j.biortech.2008.05.048).
    32. 32)
      • 21. Bauer, A.W., Kirby, M., Sherris, J.C., Turck, M.: ‘Antibiotic susceptibility testing by a standardized single disk method’, Am. J. Clin. Pathol., 1966, 45, pp. 493496.
    33. 33)
      • 10. Durán, N., Marcato, P.D., De Conti, R., Alves, O.L., Costa, F.T.M., Brocchi, M.: ‘Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action’, J. Braz. Chem. Soc., 2010, 21, pp. 949959 (doi: 10.1590/S0103-50532010000600002).
    34. 34)
      • 24. Parashar, U.K., Saxena, P.S., Shrivastava, A.: ‘Bioinspired synthesis of silver nanoparticles’, Dig. J. Nanomater. Biostruct., 2009, 4, pp. 159166.
    35. 35)
      • 27. Kasthuri, J., Kanthiravan, K., Rajendiran, N.: ‘Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach’, J. Nanopart. Res., 2008, 15, pp. 10751085.
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
      • 8. Davidson, P.M.: ‘Chemical preservatives and natural antimicrobial compounds’, in Doyle, M.P., Beuchat, L.R., Montville, T.J. (Eds.): ‘Food microbiology fundamentals and frontiers’ (ASM Press, Washington, DC, 2011), pp. 593627.
    50. 50)
      • 36. De Lima, R., Seabra, A.B., Durán, N.: ‘Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles’, J. Appl. Toxicol., 2012, 32, pp. 867879 (doi: 10.1002/jat.2780).
    51. 51)
      • 15. Lkhagvajav, N., Yasa, I., Celik, E., Koizhaiganova, M., Sari, O.: ‘Antimicrobial activity of colloidal silver nanoparticles prepared by sol gel method’, Dig. J. Nanomater. Biomater., 2011, 6, pp. 149154.
    52. 52)
      • 16. Sharma, V.K., Yngard, R.A., Lin, Y.: ‘Silver nanoparticles: Green synthesis and their antimicrobial activities’, Adv. Colloid Interf. Sci., 2009, 145, pp. 8396 (doi: 10.1016/j.cis.2008.09.002).
    53. 53)
      • 3. Kangarlou, H., Shirvaliloo, S.: ‘Protection effect of gold nanoparticles coated on fruit and vegetables using PVD method’, J. Appl. Sci., 2012, 12, (7), pp. 17821791 (doi: 10.3923/jas.2012.1782.1791).
    54. 54)
      • 4. Fernandez, A., Soriano, E., Lopez-Carballo, G., et al: ‘Preservation of aseptic conditions in absorbent pads by using silver nanotechnology’, Food Res. Int., 2009, 42, pp. 11051112 (doi: 10.1016/j.foodres.2009.05.009).
    55. 55)
      • 1. Fayaz, A.M., Balaji, K., Girilal, M., Kalaichelvan, P.T., Venkatesan, R.: ‘Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation’, J. Agric. Food Chem., 2009, 57, pp. 62466252 (doi: 10.1021/jf900337h).
    56. 56)
      • 5. Rai, M., Gade, A., Yadav, A.: ‘Biogenic nanoparticles: an introduction to what they are how they are synthesized and their applications’, in Rai, M., Durán, N. (Eds.): ‘Metal nanoparticles in microbiology’ (Springer, 2011), pp. 114.
    57. 57)
      • 7. Durán, N., Marcato, P.D.: ‘Nanobiotechnology perspectives. Role of nanotechnology in the food industry: a review’, Int. J. Food Sci. Technol., 2013, 48, (6), pp. 11271134 (doi: 10.1111/ijfs.12027).
    58. 58)
      • 2. Fernandez, A., Picouet, P., Lloret, E.: ‘Cellulose-silver nanoparticle hybrid materials to control spoilage-related microflora in absorbent pads located in trays of fresh cut melons’, Int. J. Food Microbiol., 2010, 142, pp. 222228 (doi: 10.1016/j.ijfoodmicro.2010.07.001).
    59. 59)
      • 9. Narayanan, K.B., Sakthivel, N.: ‘Biological synthesis of metal nanoparticles by microbes’, Adv. Colloid Surf., 2010, 156, pp. 113 (doi: 10.1016/j.cis.2010.02.001).
    60. 60)
      • 20. Kumar, A., Vemula, P.K., Ajayan, P.M., John, G.: ‘Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil’, Nat. Mater., 2008, 7, pp. 236241 (doi: 10.1038/nmat2099).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2013.0010
Loading

Related content

content/journals/10.1049/iet-nbt.2013.0010
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading