access icon free Synergetic effect of size and morphology of cobalt ferrite nanoparticles on proton relaxivity

Cobalt ferrite nanoparticles with average sizes of 14, 9 and 6 nm were synthesised by the chemical co-precipitation technique. Average particle sizes were varied by changing the chitosan surfactant to precursor molar ratio in the reaction mixture. Transmission electron microscopy images revealed a faceted and irregular morphology for the as-synthesised nanoparticles. Magnetic measurements revealed a ferromagnetic nature for the 14 and 9 nm particles and a superparamagnetic nature for the 6 nm particles. An increase in saturation magnetisation with increasing particle size was noted. Relaxivity measurements were carried out to determine T 2 value as a function of particle size using nuclear magnetic resonance measurements. The relaxivity coefficient increased with decrease in particle size and decrease in the saturation magnetisation value. The observed trend in the change of relaxivity value with particle size was attributed to the faceted nature of as-synthesised nanoparticles. Faceted morphology results in the creation of high gradient of magnetic field in the regions adjacent to the facet edges increasing the relaxivity value. The effect of edges in increasing the relaxivity value increases with decrease in the particle size because of an increase in the total number of edges per particle dispersion.

Inspec keywords: superparamagnetism; cobalt compounds; particle size; magnetic particles; nuclear magnetic resonance; nanofabrication; transmission electron microscopy; nanoparticles; precipitation (physical chemistry); ferromagnetic materials; magnetisation; ferrites

Other keywords: CoFe2O4; chemical coprecipitation; particle size; chitosan surfactant; cobalt ferrite nanoparticle; morphology synergetic effect; superparamagnetic nature; proton relaxivity; size 14 nm; size 6 nm; relaxivity measurement; transmission electron microscopy images; nuclear magnetic resonance measurement; size synergetic effect; ferromagnetic nature; size 9 nm; saturation magnetisation

Subjects: Magnetization curves, hysteresis, Barkhausen and related effects; Fine-particle magnetic systems; Methods of nanofabrication and processing; Structure of solid clusters, nanoparticles, nanotubes and nanostructured materials; Ferrimagnetics; Nuclear magnetic resonance and relaxation (condensed matter)

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 14. Wang, Y.X.J., Hussain, S.M., Krestin, G.P.: ‘Superparamagnetic iron oxide contrast agents physicochemical characteristics and applications in MR imaging’, Euradiol., 2001, 11, pp. 23192331.
    22. 22)
      • 11. Na, H.B., Song, I.C., Hyeon, T.: ‘Inorganic nanoparticles for MRI contrast agents’, Adv. Mater., 2009, 21, pp. 21332148 (doi: 10.1002/adma.200802366).
    23. 23)
      • 21. Patterson, A.L.: ‘The Scherrer formula for X-Ray particles size determination’, Phys. Rev., 1939, 56, pp. 978982 (doi: 10.1103/PhysRev.56.978).
    24. 24)
      • 1. Sun, C., Lee, J.S.H., Zhang, M.: ‘Magnetic nanoparticles in MR imaging and drug delivery’, Adv. Drug Deliv. Rev., 2008, 60, pp. 12521265 (doi: 10.1016/j.addr.2008.03.018).
    25. 25)
      • 9. Terreno, E., Castelli, D.D., Viale, A., Aime, S.: ‘Challenges for molecular magnetic resonance imaging’, Chem. Rev., 2010, 110, pp. 30193042 (doi: 10.1021/cr100025t).
    26. 26)
      • 10. Huang, J., Zhong, X., Wang, L., Yang, L., Mao, H.: ‘Improving the magnetic resonance imaging contrast and detection method with engineered magnetic nanoparticles’, Theranostics., 2012, 2, pp. 86102 (doi: 10.7150/thno.4006).
    27. 27)
      • 22. Reetz, M.T., Helbig, W., Quaiser, S.A., Stimming, U., Breuer, N., Vogel, R.: ‘Visualization of surfactants on nanostructured Palladium clusters by a combination of STM and High-Resolution TEM’, Science, 1995, 267, pp. 367369 (doi: 10.1126/science.267.5196.367).
    28. 28)
      • 19. He, Q., Zhang, T., Yang, Y., Ding, F.: ‘In vitro biocompatibility of chitosan-based materials to primary culture of hippocampal neurons’, J. Mater. Sci: Mater. Med., 2009, 20, pp. 14571466 (doi: 10.1007/s10856-009-3702-8).
    29. 29)
      • 13. Weissleder, R., Moore, A., Mahmood, U., et al: ‘In vivo magnetic resonance imaging of transgene expression’, Nat. Med., 2000, 6, pp. 351355 (doi: 10.1038/73219).
    30. 30)
      • 12. Koenig, S.H., Kellar, K.E.: ‘Theory of 1/T1 and 1/T2 NMRD profiles of solutions of magnetic nanoparticles’, Magn. Reson. Med., 1995, 34, pp. 227233 (doi: 10.1002/mrm.1910340214).
    31. 31)
      • 6. Weissleder, R., Lee, A.S., Fischman, A.J., et al: ‘Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR Imaging’, Radiology, 1991, 181, pp. 245249.
    32. 32)
      • 18. Covaliu, C.I., Berger, D., Matei, C., et al: ‘Magnetic nanoparticles coated with polysaccharide polymers for potential biomedical applications’, J. Nanopart. Res., 2011, 13, pp. 61696180 (doi: 10.1007/s11051-011-0452-6).
    33. 33)
      • 20. VandeVord, P.J., Matthew, H.W., DeSilva, S.P., et al: ‘Evaluation of the biocompatibility of a chitosan scaffold in mice’, Biomed. Mater. Res., 2002, 59, (3), pp. 585590 (doi: 10.1002/jbm.1270).
    34. 34)
      • 2. Laurent, S., Forge, D., Port, M., et al: ‘Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications’, Chem. Rev., 2008, 108, pp. 20642110 (doi: 10.1021/cr068445e).
    35. 35)
      • 4. Tseng, H.Y., Lee, G.B., Lee, C.Y., Shih, Y.H., Lin, X.Z.: ‘Localized heating of tumours utilising injectable magnetic nanoparticles for hyperthermia cancer therapy’, IET Nanobiotechnol., 2009, 3, pp. 4654 (doi: 10.1049/iet-nbt.2008.0013).
    36. 36)
      • 24. Snoeck, E., Gatel, C., Lacroix, L.M., et al: ‘Magnetic configurations of 30 nm iron nanocubes studied by electron holography’, Nano Lett., 2008, 8, (12), pp. 42934298 (doi: 10.1021/nl801998x).
    37. 37)
      • 17. Jun, Y.W., Lee, J.H., Cheon, J.: ‘Chemical design of nanoparticle probes for high- performance magnetic resonance’, Angew. Chem. Int., 2008, 47, pp. 51225135 (doi: 10.1002/anie.200701674).
    38. 38)
      • 7. Bulte, J.W.M., Kraitchman, D.L.: ‘Iron oxide MR contrast agents for molecular and cellular imaging’, NMR Biomed., 2004, 17, pp. 484499 (doi: 10.1002/nbm.924).
    39. 39)
      • 5. Laniado, M., Weinmann, H.J., Schorner, W., Felix, R., Speck, U.: ‘First use of GdDTPA/dimeglumine in man’, Physiol. Chem. Phys. Med. NMR., 1984, 16, pp. 157165.
    40. 40)
      • 15. Zhao, M., Beauregard, D.A., Loizou, L., Davletov, B., Brindle, K.M.: ‘Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent’, Nat. Med., 2001, 7, (11), pp. 12411244 (doi: 10.1038/nm1101-1241).
    41. 41)
      • 8. Hoult, D.I., Lauterbur, P.C.: ‘The sensitivity of the zeugmatographic experiment’, J. Magn. Reson., 1979, 34, pp. 425433.
    42. 42)
      • 16. Frey, N.A., Peng, S., Cheng, K., Sun, S.: ‘Magnetic nanoparticles: synthesis, functionalization and applications in bioimaging and magnetic energy storage’, Chem. Soc. Rev., 2009, 38, pp. 25322542 (doi: 10.1039/b815548h).
    43. 43)
      • 3. Schmidt, A.M.: ‘Thermoresponsive magnetic colloids’, Colloid Poly. Sci., 2007, 285, pp. 953966 (doi: 10.1007/s00396-007-1667-z).
    44. 44)
      • 23. Joshia, H.M., Lina, Y.P., Mohammed, A.: ‘Effect of shape and size of cobalt ferrite nanostructures on their MRI contrast and thermal activation’, J. Phys. Chem. C Nanomater Interfaces, 2009, 113, pp. 1776117767 (doi: 10.1021/jp905776g).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2013.0009
Loading

Related content

content/journals/10.1049/iet-nbt.2013.0009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading