access icon free Application of silica nanoparticles in maize to enhance fungal resistance

In this study, maize treated with nanosilica (20–40 nm) is screened for resistance against phytopathogens such as Fusarium oxysporum and Aspergillus niger and compared with that of bulk silica. The resistivity is measured for disease index and expression of plant responsive compounds such as total phenols, phenylalanine ammonia lyase, peroxidase and polyphenol oxidase. The results indicate that nanosilica-treated plant shows a higher expression of phenolic compounds (2056 and 743 mg/ml) and a lower expression of stress-responsive enzymes against both the fungi. Maize expresses more resistance to Aspergillus spp., than Fusarium spp. These results show significantly higher resistance in maize treated with nanosilica than with bulk, especially at 10 and 15 kg/ha. In addition, hydrophobic potential and silica accumulation percentage of nanosilica treated maize (86.18° and 19.14%) are higher than bulk silica treatment. Hence, silica nanoparticles can be used as an alternative potent antifungal agent against phytopathogens.

Inspec keywords: crops; molecular biophysics; nanobiotechnology; botany; nanoparticles; agricultural engineering; microorganisms; plant diseases; silicon compounds; enzymes

Other keywords: plant responsive compounds; silica nanoparticles; stress-responsive enzymes; Fusarium oxysporum; silica accumulation percentage; hydrophobic potential; phenylalanine ammonia; phenols; maize; bulk silica; Aspergillus niger; size 20 nm to 40 nm; phenolic compounds; antifungal agent; lyase; polyphenol oxidase; peroxidase; fungal resistance; SiO2; phytopathogens

Subjects: Biophysical instrumentation and techniques; Engineering materials; Nanotechnology industry; Biotechnology industry; Molecular biophysics; Agriculture

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 16. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., Prabu, P., Kannan, N.: ‘Growth and physiological responses of maize (Zea mays. L) treated with silica nanoparticles in soil’, J. Nanopart. Res., 2012b, 14, pp. 114 (doi: 10.1007/s11051-012-1294-6).
    22. 22)
      • 12. Rodrigues, F.A., Benhamou, N., Datnoff, L.E., Jones, J.B., Bélanger, R.R.: ‘Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance’, Phytopathology, 2003, 93, pp. 535546 (doi: 10.1094/PHYTO.2003.93.5.535).
    23. 23)
      • 5. Rains, D.W., Epstein, E., Zasoski, R.J., Aslam, M.: ‘Active silicon uptake by wheat’, Plant Soil, 2006, 280, pp. 223228 (doi: 10.1007/s11104-005-3082-x).
    24. 24)
      • 1. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., Kumar, D.S.: ‘Nanoparticulate material delivery to plants’, Plant Sci., 2010, 179, pp. 154163 (doi: 10.1016/j.plantsci.2010.04.012).
    25. 25)
      • 8. Aoudou, Y., Tatsadjieu, N.L., Mbofung, C.M.: ‘Mycelia growth inhibition of some Aspergillus and Fusarium species by essential oils and their potential use as antiradical agent’, Agric. Biol. J. North Am., 2011, 2, pp. 13621367 (doi: 10.5251/abjna.2011.2.11.1362-1367).
    26. 26)
      • 6. Epstein, E.: ‘Silicon in plants: facts vs. concepts’, in Dantoff, L.E., Snyder, G.H., Korndoper, G.H. (eds.): ‘Silicon in agriculture’ (Elsevier Science, Amsterdam, 2001), pp. 115.
    27. 27)
      • 15. Yuvakkumar, R., Elango, V., Rajendran, V., Kannan, N., Prabu, P.: ‘Influence of nanosilica powder on the growth of maize crop (Zea mays L.)’, Int. J. Green Nanotechnol., 2011, 3, pp. 180190 (doi: 10.1080/19430892.2011.628581).
    28. 28)
      • 19. Ramamoorthy, V., Raguchander, T., Samiyappan, R.: ‘Enhancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads’, Eur. J. Plant Pathol., 2002, 108, pp. 429441 (doi: 10.1023/A:1016062702102).
    29. 29)
      • 9. Ma, J.F., Yamaji, N.: ‘Functions and transport of Si in plants’, Cell Mol. Life Sci., 2008, 65, pp. 30493057 (doi: 10.1007/s00018-008-7580-x).
    30. 30)
      • 3. Zheng, L., Hong, F., Lu, S., Liu, C.: ‘Effects of nano-TiO2 on strength of naturally aged seeds and growth of spinach’, Biol. Trace Elem. Res., 2005, 104, pp. 8392 (doi: 10.1385/BTER:104:1:083).
    31. 31)
      • 13. Fauteux, F., Remus-Borel, W., Menzies, J.G., Belanger, R.R.: ‘Silicon and plant disease resistance against pathogenic fungi’, FEMS Microbiol. Lett., 2005, 249, pp. 16 (doi: 10.1016/j.femsle.2005.06.034).
    32. 32)
      • 10. Cherif, M., Asselin, A., Belanger, R.R.: ‘Defense responses induced by soluble Si in cucumber roots infected by Pythium spp’, Phytopathology, 1994, 84, pp. 236242 (doi: 10.1094/Phyto-84-236).
    33. 33)
      • 2. Carmen, I.U., Chithra, P., Huang, Q., Takhistov, P., Liu, S., Kokini, J.L.: ‘Nanotechnology: a new frontier in food science’, Food Technol., 2003, 57, pp. 2429.
    34. 34)
      • 21. Fawe, A., Abou-Zaid, M., Menzies, J.G., Belanger, R.R.: ‘Silicon-mediated accumulation of flavinoid phytoalexins in cucumber’, Phytopathology, 1998, 88, pp. 396401 (doi: 10.1094/PHYTO.1998.88.5.396).
    35. 35)
      • 11. Kim, S.G., Kim, K.W., Park, E.W., Choi, D.: ‘Silicon induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast’, Phytopathology, 2002, 92, pp. 10951103 (doi: 10.1094/PHYTO.2002.92.10.1095).
    36. 36)
      • 20. Navarro, E., Baun, A., Behra, R., et al: ‘Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants and fungi’, Ecotoxicology, 2008, 17, pp. 372386 (doi: 10.1007/s10646-008-0214-0).
    37. 37)
      • 14. Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., Kannan, N.: ‘Silica nanoparticles for increased silica availability in maize (Zea mays. L) seeds under hydroponic conditions’, Curr. Nanosci., 2012, 8, pp. 902908 (doi: 10.2174/157341312803989033).
    38. 38)
      • 23. Currie, H.A., Perry, C.C.: ‘Silica in plants: biological, biochemical and chemical studies’, Ann. Bot., 2007, 100, pp. 17 (doi: 10.1093/aob/mcm247).
    39. 39)
      • 7. Tamburic-Ilincic, L., Schaafsma, A.W.: ‘The prevalence of Fusarium spp. colonizing seed corn stalks in south western Ontario, Canada’, Can. J. Plant Sci., 2009, 89, pp. 103106 (doi: 10.4141/CJPS08083).
    40. 40)
      • 17. Wakabayashi, K., Hoson, T., Kamisaka, S.: ‘Osmotic stress suppresses the cell wall stiffening and the increase in cell wall-bound ferulic and diferulic acids in wheat coleoptiles’, Plant Physiol., 1997, 113, pp. 967973.
    41. 41)
      • 4. Yang, L., Watts, D.J.: ‘Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles’, Toxicol. Lett., 2005, 158, pp. 122132 (doi: 10.1016/j.toxlet.2005.03.003).
    42. 42)
      • 18. Hammerschmidt, R., Nuckles, E.M., Ku, C.J.: ‘Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium’, Physiol. Plant Pathol., 1982, 20, pp. 7382 (doi: 10.1016/0048-4059(82)90025-X).
    43. 43)
      • 22. Liang, Y., Chen, Q., Liu, Q., Zhang, W., Ding, R.: ‘Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.)’, J. Plant Physiol., 2003, 160, pp. 11571164 (doi: 10.1078/0176-1617-01065).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2013.0004
Loading

Related content

content/journals/10.1049/iet-nbt.2013.0004
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading