access icon free Low electric field DNA separation and in-channel amperometric detection by microchip capillary electrophoresis

Miniaturisation of microchip capillary electrophoresis (MCE) is becoming an increasingly important research topic, particularly in areas related to micro total analysis systems or lab on a chip. One of the important features associated with the miniaturised MCE system is the portable power supply unit. In this work, a very low electric field MCE utilising an amperometric detection scheme was designed for use in DNA separation. The device was fabricated from a glass/polydimethylsiloxane hybrid engraved microchannel with platinum electrodes sputtered onto a glass substrate. Measurement was based on a three-electrode arrangement, and separation was achieved using a very low electric field of 12 V/cm and sample volume of 1.5 µl. The device was tested using two commercial DNA markers of different base pair sizes. The results are in agreement with conventional electrophoresis, but with improved resolution. The sensitivity consistently higher than 100 nA, and the separation time approximately 45 min, making this microchip an ideal tool for DNA analysis.

Inspec keywords: biological effects of fields; separation; platinum; electrochemical electrodes; glass; DNA; polymers; lab-on-a-chip; electrophoresis; molecular biophysics; sputtering; biological techniques; microsensors; microfabrication; bioelectric phenomena; amperometric sensors

Other keywords: microchannel; miniaturised MCE system; in-channel amperometric detection; platinum electrodes; lab-on-a-chip; DNA analysis; DNA markers; micrototal analysis systems; microchip capillary electrophoresis; glass substrate; glass-polydimethylsiloxane hybrid; Pt; low electric field DNA separation; three-electrode arrangement; sputtering; portable power supply unit

Subjects: Molecular biophysics; Biological engineering and techniques; Applied fluid mechanics; Biological effects of radiations; Electrochemical analytical methods; Biophysical instrumentation and techniques; Microsensors and nanosensors; Chemical sensors; Sensing and detecting devices; Chemical sensors; Electrochemistry and electrophoresis

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 13. Ordeig, O., Godino, N., del Campo, J., Munoz, F.X., Nikolajeff, F., Nyholm, L.: ‘On-chip electric field driven electrochemical detection using a poly(dimethylsiloxane) microchannel with gold microband electrodes’, Anal. Chem., 2008, 80, (10), pp. 36223632 (doi: 10.1021/ac702570p).
    20. 20)
      • 15. Lin, Y.-C.: ‘Design of low voltage-driven capillary electrophoresis chips using moving electrical fields’, Sens. Actuators B, Chem., 2001, 80, (1), pp. 3340 (doi: 10.1016/S0925-4005(01)00868-1).
    21. 21)
      • 20. Barker, K.D., Barnett, K.A., Connell, S.M., et al: ‘Synthesis and characterization of heteroleptic Cr(Diimine)3 3 + complexes’, Inorg. Chim. Acta, 2001, 316, (1–2), pp. 4149 (doi: 10.1016/S0020-1693(01)00377-2).
    22. 22)
      • 8. Ponmozhi, J., Frias, C., Marques, T., Frazão, O.: ‘Smart sensors/actuators for biomedical applications: review’, Measurement, 2012, 45, (7), pp. 16751688 (doi: 10.1016/j.measurement.2012.02.006).
    23. 23)
      • 5. Xu, J.-J., Wang, A.-J., Chen, H.-Y.: ‘Electrochemical detection modes for microchip capillary electrophoresis’, TrAC Trends Anal. Chem., 2007, 26, (2), pp. 125132 (doi: 10.1016/j.trac.2006.08.006).
    24. 24)
      • 16. Wake, H.A., Brooke, M.A.: ‘Mixed-domain simulation of electrophoretic DNA separation for CMOS IC design’. 2008 51st Midwest Symp. Circuits and Systems, vols 1 and 2, 2008, vol. 969, pp. 670673.
    25. 25)
      • 12. Ha, K., Joo, G.S., Jha, S.K., Yeon, I.J., Kim, Y.S.: ‘Miniaturisation of a capillary electrophoresis microchip for the sensing of endocrine disruptors’, IET Nanobiotechnol., 2010, 4, (4), pp. 103108 (doi: 10.1049/iet-nbt.2010.0006).
    26. 26)
      • 14. Liu, P., Yeung, S.H.I., Crenshaw, K.A., Crouse, C.A., Scherer, J.R., Mathies, R.A.: ‘Real-time forensic DNA analysis at a crime scene using a portable microchip analyzer’, Forensic Sci. Int.: Genetics, 2008, 2, (4), pp. 301309 (doi: 10.1016/j.fsigen.2008.03.009).
    27. 27)
      • 7. Xu, X., Li, L., Weber, S.G.: ‘Electrochemical and optical detectors for capillary and chip separations’, TrAC Trends Anal. Chem., 2007, 26, (1), pp. 6879 (doi: 10.1016/j.trac.2006.11.015).
    28. 28)
      • 1. Xu, X., Zhang, S., Chen, H., Kong, J.: ‘Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments’, Talanta, 2009, 80, (1), pp. 818 (doi: 10.1016/j.talanta.2009.06.039).
    29. 29)
      • 3. Shang, F., Guihen, E., Glennon, J.D.: ‘Recent advances in miniaturisation – the role of microchip electrophoresis in clinical analysis’, Electrophoresis, 2012, 33, (1), pp. 105116 (doi: 10.1002/elps.201100454).
    30. 30)
      • 6. Nováková, L., Vlcková, H.: ‘A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation’, Anal. Chim. Acta, 2009, 656, (1–2), pp. 835 (doi: 10.1016/j.aca.2009.10.004).
    31. 31)
      • 11. Bani-Yaseen, A.A.D.: ‘Fabrication and characterization of fully integrated microfluidic device with carbon sensing electrode for the analysis of selected biomedical targets’, IEEE Sens. J., 2009, 9, (1–2), pp. 8186 (doi: 10.1109/JSEN.2008.2011074).
    32. 32)
      • 10. Castano-Alvarez, M., Fernandez-la-Villa, A., Pozo-Ayuso, D.F., Fernandez-Abedul, M.T., Costa-Garcia, A.: ‘Multiple-point electrochemical detection for a dual-channel hybrid PDMS-glass microchip electrophoresis device’, Electrophoresis, 2009, 30, (19), pp. 33723380 (doi: 10.1002/elps.200900291).
    33. 33)
      • 9. Cao, W., Su, M.M., Zhang, S.S.: ‘Rapid and sensitive DNA target detection using enzyme amplified electrochemical detection based on microchip’, Electrophoresis, 2010, 31, (4), pp. 659665 (doi: 10.1002/elps.200900538).
    34. 34)
      • 2. Ghanim, M.H., Abdullah, M.Z.: ‘Integrating amperometric detection with electrophoresis microchip devices for biochemical assays: recent developments’, Talanta, 2011, 85, (1), pp. 2834 (doi: 10.1016/j.talanta.2011.04.069).
    35. 35)
      • 17. Jang, Y.C., Jha, S.K., Chand, R., Islam, K., Kim, Y.S.: ‘Capillary electrophoresis microchip for direct amperometric detection of DNA fragments’, Electrophoresis, 2011, 32, (8), pp. 913919 (doi: 10.1002/elps.201000697).
    36. 36)
      • 19. Ghanim, M.H., Hasan, K., Najimudin, N., Abdullah, M.Z.: ‘Design of DNA biosensors and amperometric microchips featuring copper electrodes’. Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS Int. Conf., (2012).
    37. 37)
      • 4. Kaigala, G.V., Behnam, M., Bliss, C., et al: ‘Inexpensive, universal serial bus-powered and fully portable lab-on-a-chip-based capillary electrophoresis instrument’, IET Nanobiotechnol., 2009, 3, (1), pp. 17 (doi: 10.1049/iet-nbt:20080005).
    38. 38)
      • 18. Kim, J.-H., Na, K.-H., Kang, C.J., Jeon, D., Kim, Y.-S.: ‘A disposable thermopneumatic-actuated microvalve stacked with PDMS layers and Ito-coated glass’, Microelectron. Eng., 2004, 73–74, (0), pp. 864869 (doi: 10.1016/S0167-9317(04)00235-7).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2012.0044
Loading

Related content

content/journals/10.1049/iet-nbt.2012.0044
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading