access icon free Field-programmable lab-on-a-chip based on microelectrode dot array architecture

The fundamentals of electrowetting-on-dielectric (EWOD) digital microfluidics are very strong: advantageous capability in the manipulation of fluids, small test volumes, precise dynamic control and detection, and microscale systems. These advantages are very important for future biochip developments, but the development of EWOD microfluidics has been hindered by the absence of: integrated detector technology, standard commercial components, on-chip sample preparation, standard manufacturing technology and end-to-end system integration. A field-programmable lab-on-a-chip (FPLOC) system based on microelectrode dot array (MEDA) architecture is presented in this research. The MEDA architecture proposes a standard EWOD microfluidic component called ‘microelectrode cell’, which can be dynamically configured into microfluidic components to perform microfluidic operations of the biochip. A proof-of-concept prototype FPLOC, containing a 30 × 30 MEDA, was developed by using generic integrated circuits computer aided design tools, and it was manufactured with standard low-voltage complementary metal-oxide-semiconductor technology, which allows smooth on-chip integration of microfluidics and microelectronics. By integrating 900 droplet detection circuits into microelectrode cells, the FPLOC has achieved large-scale integration of microfluidics and microelectronics. Compared to the full-custom and bottom-up design methods, the FPLOC provides hierarchical top–down design approach, field-programmability and dynamic manipulations of droplets for advanced microfluidic operations.

Inspec keywords: bioMEMS; microfluidics; biological techniques; microelectrodes; lab-on-a-chip; CMOS integrated circuits; wetting

Other keywords: biochip; computer aided design tools; MEDA; microelectrode dot array architecture; precise dynamic control; generic integrated circuits; FPLOC; precise dynamic detection; field-programmable lab-on-a-chip; EWOD; electrowetting-on-dielectric digital microfluidics; microscale systems; fluid manipulation; standard low-voltage complementary metal-oxide-semiconductor technology

Subjects: Biological engineering and techniques; Biophysical instrumentation and techniques; CMOS integrated circuits; MEMS and NEMS device technology; Micromechanical and nanomechanical devices and systems

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 21. Chakrabarty, K., Fair, R.B., Zeng, J.: ‘Design tools for digital microfluidic biochips: toward functional diversification and more than moore’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2010, 29, (7), pp. 10011017 (doi: 10.1109/TCAD.2010.2049153).
    23. 23)
      • 12. Wang, S.-W., Lu, M.S.-C.: ‘CMOS capacitive sensors with sub-µm microelectrodes for biosensing applications’, IEEE Sens. J., 2010, 10, (5), pp. 991996 (doi: 10.1109/JSEN.2010.2041447).
    24. 24)
      • 15. Griffth, E.J., Akella, S., Gol, M.K.: ‘Performance characterization of a re configurable planar array digital microfluidic system’. Design Automation Methods and Tools for Microfluidics-Based Biochips, Netherland, Springer, 2006, pp. 329356.
    25. 25)
      • 5. Rios, A., Zougagh, M., Avila, M.: ‘Miniaturization through lab-on-a-chip: utopia or reality for routine laboratories? a review’, Anal. Chim. Acta, 2012, 740, pp. 111 (doi: 10.1016/j.aca.2012.06.024).
    26. 26)
      • 13. Gascoyne, P.R., Vykoukal, J.V., Schwartz, J.A., et al: ‘Dielectrophoresis-based programmable fluidic processors’, Lab Chip, 2004, 4, (4), pp. 299309 (doi: 10.1039/b404130e).
    27. 27)
      • 25. Trimberger, S.: ‘Field-programmable gate array technology’ (Xilinx, San Jose, CA, USA, 1994).
    28. 28)
      • 28. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: ‘Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits’. Proc. IEEE, 2003.
    29. 29)
      • 26. Zhao, P., Li, Y., Zeng, X., Zhou, J., Huang, Y., Liu, R.: ‘EWOD Using P(VDF-TrFE)’. Proc. IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (NEMS), Shenzhen, China, 2009.
    30. 30)
      • 16. Huang, T.-W., Ho, T.-Y.: ‘A fast rout ability-and performance-driven droplet routing algorithm for digital micro fluidic biochips’. Proc. 2009 IEEE Int. Conf. on Computer Design (ICCD 2009), Lake Tahoe, CA, USA, 4–7 October 2009, pp. 445450.
    31. 31)
      • 7. Malic, L., Brassard, D., Veres, T., Tabrizian, M.: ‘Integration and detection of biochemical assays in digital microfluidic LOC devices’, Lab Chip, 2010, 10, (4), pp. 418431 (doi: 10.1039/b917668c).
    32. 32)
      • 6. Kovarik, M.L., Ornoff, D.M., Melvin, A.T., et al: ‘Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field’, Anal. Chem., 2012, 85, (2), pp. 451472 (doi: 10.1021/ac3031543).
    33. 33)
      • 9. Fair, R.B.: ‘Digital micro fluidics: is a true lab-on-a-chip possible?’, Microfluidics Nanofluidics, 2007, 3, (3), pp. 245281 (doi: 10.1007/s10404-007-0161-8).
    34. 34)
      • 22. Wang, G., Teng, D., Fan, S.-K.: ‘Digital micro fluidic operations on microelectrode array architecture’. Proc. IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems (NEMS), Kaohsiung, Taiwan, 2011.
    35. 35)
      • 4. Chin, C.D., Linder, V., Sia, S.K.: ‘Commercialization of micro fluidic point-of-care diagnostic devices’, Lab. Chip, 2012, 12, (12), pp. 21182134 (doi: 10.1039/c2lc21204h).
    36. 36)
      • 8. Linder, V.: ‘Micro fluidics at the crossroad with point-of-care diagnostics’, Analyst, 2007, 132, (12), pp. 11861192 (doi: 10.1039/b706347d).
    37. 37)
      • 23. Wang, G., Teng, D., Fan, S.-K.: ‘Digital microfluidic operations on microelectrode dot array architecture’, IET Nanobiotechnol., 2011, 5, (4), pp. 152160 (doi: 10.1049/iet-nbt.2011.0018).
    38. 38)
      • 11. Li, Y., Parkes, W., Haworth, L., et al: ‘Anodic Ta2O5 for CMOS compatible low voltage electro wetting-on-dielectric device fabrication’, Solid State Electron., 2008, 52, (9), pp. 13821387 (doi: 10.1016/j.sse.2008.04.030).
    39. 39)
      • 20. Su, F., Chakrabarty, K., Fair, R.B.: ‘Micro fluidics-based biochips: technology issues, implementation platforms, and design-automation challenges’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2006, 25, (2), pp. 211223 (doi: 10.1109/TCAD.2005.855956).
    40. 40)
      • 14. Morgan, H., Hadwen, B., Broder, G., et al: ‘Programmable large area digital micro fluidic array with integrated droplet sensing for bioassays’, Lab Chip, 2012, 12, (18), pp. 33053313 (doi: 10.1039/c2lc40273d).
    41. 41)
      • 2. Pollack, M.G., Fair, R.B., Shenderov, A.D.: ‘Electro wetting-based actuation of liquid droplets for micro fluidic applications’, Appl. Phys. Lett., 2000, 77, (11), pp. 17251726 (doi: 10.1063/1.1308534).
    42. 42)
      • 17. Chen, Z., Teng, D., Wang, G., Fan, S.-K.: ‘Droplet routing in high-level synthesis of configurable digital microfluidic biochips based on microelectrode dot array architecture’, BioChip J., 2011, 5, (4), pp. 343352 (doi: 10.1007/s13206-011-5408-5).
    43. 43)
      • 18. Chakrabarty, K., Su, F.: ‘Design automation challenges for micro fluidics-based biochips’. Proc. Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP ‘05), Montreux, Switzerland, 01–03 June 2005, pp. 260265.
    44. 44)
      • 3. Lee, J., Moon, H., Fowler, J., Schoellhammer, T., Kim, C.-J.: ‘Electro wetting and electro wetting-on-dielectric for micro scale liquid handling’, Sens. Actuators A, Phys., 2002, 95, (2), pp. 259268 (doi: 10.1016/S0924-4247(01)00734-8).
    45. 45)
      • 24. Kuon, I., Tessier, R., Rose, J.: ‘FPGA architecture: survey and challenges’, Found. Trends Electron. Des. Autom., 2008, 2, (2), pp. 135253 (doi: 10.1561/1000000005).
    46. 46)
      • 1. Nelson, W.C., Peng, I., Lee, G.-A., Loo, J.A., Garrell, R.L.: ‘Incubated protein reduction and digestion on an EWOD digital micro fluidic chip for MALDI-MS’, Anal. Chem., 2010, 82, (23), pp. 99329937 (doi: 10.1021/ac101833b).
    47. 47)
      • 27. Grotjohn, T., Hoefflinger, B.: ‘A parametric short-channel MOS transistor model for subthreshold and strong inversion current’, IEEE J. Solid State Circuits, 1984, 19, (1), pp. 100112 (doi: 10.1109/JSSC.1984.1052093).
    48. 48)
      • 19. Chakrabarty, K., Su, F.: ‘Digital microfluidic biochips: synthesis, testing, and reconfiguration techniques’ (Taylor and Francis, 2007).
    49. 49)
      • 10. Whitesides, G.M.: ‘The origins and the future of micro fluidics’, Nature, 2006, 442, (7101), pp. 368373 (doi: 10.1038/nature05058).
    50. 50)
      • 29. Zeng, J., Korsmeyer, T.: ‘Principles of droplet electrohydrodynamics for lab-on-a-chip’, Lab Chip, 2004, 4, (4), pp. 265277 (doi: 10.1039/b403082f).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2012.0043
Loading

Related content

content/journals/10.1049/iet-nbt.2012.0043
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading