access icon free Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots

Quantum dots (QDs) are one of the first nanotechnologies to be integrated with the biological sciences that used for imaging or tracking macromolecules/cells in cell/tissue. Because of QDs are important in biomedical and biological applications, identify a variety of synthesis methods to produce QDs with different characteristics also is particularly important. Hence, in this review the authors discussed three methods for synthesis of heavy metal chalcogenide-based QDs for use in biomedical field: (i) Organometallic method for synthesis of QDs consists of three components: precursors, organic surfactants and solvents. The authors also discussed water-solubilisation strategies of synthesised QDs including encapsulation and ligand exchange. (ii) Aqueous synthesis technique using short-chain thiols as stabilising agents is a useful alternative to organometallic synthesis of CdSe, CdS and CdTe QDs. (iii) The third method discussed in this article for QDs synthesis involves the utilise of microorganisms to prepare QDs with controlled size, shape, chemical composition and functionality. The authors also discussed recently new methods for the synthesis of the appropriate QDs for use in biology. In addition, attachment of biomolecules such as antibodies, oligonucleotides on the surface of QDs for specific targeting and different opinions about toxicity of QD have been studied.

Inspec keywords: II-VI semiconductors; semiconductor quantum dots; surfactants; solvation; wide band gap semiconductors; organometallic compounds; biochemistry; cadmium compounds; biomedical engineering; encapsulation; nanomedicine; nanofabrication; toxicology; colloids; solubility; molecular biophysics; microorganisms; proteins

Other keywords: organometallic method; QD toxicity; biological sciences; QD shapes; biological tissues; CdSe; controlled size QDs; synthesised QDs; cell tracking; biomedical applications; cell imaging; microorganism utilization; antibodies; QD chemical composition; precursors; water solubilisation strategies; CdTe; biomolecule attachments; QD characteristics; macromolecule tracking; solvents; encapsulation; biological applications; shortchain thiols; organic surfactants; stabilising agents; CdS; ligand exchange; biomolecular specific targeting; oligonucleotides; aqueous synthesis technique; QD functionality; quantum dot nanotechnology; heavy metal chalcogenide-based QD synthesis; macromolecule imaging

Subjects: Physical chemistry of biomolecular solutions and condensed states; Biomedical engineering; Solid-fluid interface processes; Low-dimensional structures: growth, structure and nonelectronic properties; Colloids; Methods of nanofabrication and processing; Association, addition, and insertion; Biomolecular dynamics, molecular probes, molecular pattern recognition; Biomolecular interactions, charge transfer complexes; Nanotechnology applications in biomedicine; Solubility, segregation, and mixing

References

    1. 1)
      • 126. Cunningham, D.P., Lundie, L.L.Jr.: ‘Precipitation of cadmium by Clostridium thermoaceticum’, Appl. Environ. Microbiol., 1993, 59, (1), pp. 714.
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
      • 55. Bakar, N.A., Umar, A.A., Aziz, T.H.T., et al, (Eds.):Synthesis of CdSe quantum dots: effect of surfactant on the photoluminescence property’. Semiconductor Electronics, 2008 ICSE 2008 IEEE Int. Conf.,25–27 November 2008.
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • 173. Chen, N., et al: ‘The cytotoxicity of cadmium-based quantum dots’, Biomaterials, 2012, 33, pp. l2381244.
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 134. Qiu, H.K., Shen, Y., Wang, L.J., Zhang, J.C., Qin, K.F., (Eds.):Synthesis of high-performance aqueous CdSe quantum dots based on combination of Se source as vapor-phase and hydrothermal method’ (Trans Tech. Publ, 2011).
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
      • 177. Tang, M., et al: ‘Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons’, Environmental health perspectives, 2008, 116, pp. 915.
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
      • 83. Kumar, C.S.S.R.: ‘Semiconductor nanomaterials’ (John Wiley & Sons, 2010).
    64. 64)
    65. 65)
    66. 66)
    67. 67)
      • 175. Su, Y., et al: ‘The cytotoxicity of cadmium based, aqueous phase-synthesized, quantum dots and its modulation by surface coating’, Biomaterials, 2009, 30, pp. l925.
    68. 68)
    69. 69)
    70. 70)
    71. 71)
      • 147. Liu, M., Zhao, H., Chen, S., Wang, H., Quan, X.: ‘Photochemical synthesis of highly fluorescent CdTe quantum dots for ‘on–off–on’ detection of Cu (II) ions’, Inorg. Chim. Acta, 2012.
    72. 72)
    73. 73)
      • 51. Ekimov, A.I., Onushchenko, A.A., Tsekhomskii, V.A.: ‘Exciton absorption by copper(I) chloride crystals in a glassy matrix’, Fizika i Khimiya Stekla, 1980, 6, p. 511.
    74. 74)
    75. 75)
    76. 76)
    77. 77)
    78. 78)
    79. 79)
    80. 80)
      • 63. Guo, L.: ‘Synthesis and characterization of II-VI and IV-VI colloidal semiconductor quantum dots’ (University of Rochester, New York, 2008).
    81. 81)
      • 89. Shan Jin, Y.H., Gu, Z., Liu, L., Wu, H.-C.: ‘Application of quantum dots in biological imaging’, J. Nanomater., 2011, 2011, pp. 113.
    82. 82)
    83. 83)
    84. 84)
    85. 85)
    86. 86)
    87. 87)
    88. 88)
    89. 89)
    90. 90)
    91. 91)
    92. 92)
    93. 93)
    94. 94)
    95. 95)
    96. 96)
    97. 97)
    98. 98)
    99. 99)
    100. 100)
      • 71. Rogach, A.L.: ‘Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications’ (Springer, 2008).
    101. 101)
    102. 102)
    103. 103)
    104. 104)
    105. 105)
      • 110. Laddaga, R.A., Bessen, R., Silver, S.: ‘Cadmium-resistant mutant of Bacillus subtilis 168 with reduced cadmium transport’, J. Bacteriol., 1985, 162, pp. 11061110.
    106. 106)
      • 114. Aiking, H., Stijnman, A., van Garderen, C., van Heerikhuizen, H., van 't Riet, J.: ‘Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture’, Appl. Environ. Microbiol., 1984, 47, (2), pp. 374377.
    107. 107)
    108. 108)
    109. 109)
      • 164. Shiohara, A., et al: ‘On the cyto-toxicity caused by quantum dots’, Microbiol Immunol, 2004, 48, pp. 669675.
    110. 110)
    111. 111)
    112. 112)
    113. 113)
    114. 114)
    115. 115)
    116. 116)
    117. 117)
    118. 118)
    119. 119)
    120. 120)
    121. 121)
    122. 122)
    123. 123)
    124. 124)
    125. 125)
    126. 126)
      • 139. Rong, X.L., Zhao, Q., Tao, G.H.: ‘Aqueous synthesis of CdSe and CdSe/CdS quantum dots with controllable introduction of Se and S sources’, Chin. Chem. Lett., 2012.
    127. 127)
    128. 128)
    129. 129)
    130. 130)
      • 50. Peng, X., Thessing, J.: ‘Controlled synthesis of high quality semiconductor nanocrystals’, in Peng, X., Mingos, D.(Eds.): ‘Semiconductor nanocrystals and silicate nanoparticles’ (Springer, Berlin, Heidelberg, 2005), pp. 79119.
    131. 131)
    132. 132)
    133. 133)
    134. 134)
    135. 135)
      • 113. Aiking, H., Kok, K., van Heerikhuizen, H., van 't Riet, J.: ‘Adaptation to cadmium by Klebsiella aerogenes growing in continuous culture proceeds mainly via formation of cadmium sulfide’, Appl. Environ. Microbiol., 1982, 44, (4), pp. 938944.
    136. 136)
    137. 137)
    138. 138)
    139. 139)
    140. 140)
    141. 141)
    142. 142)
    143. 143)
    144. 144)
    145. 145)
    146. 146)
      • 100. Choi, S.Y., Shim, J.P., Kim, D.S., Kim, T.Y., Suh, K.S.: ‘Aqueous synthesis of CdTe quantum dot using dithiol-functionalized ionic liquid’, J. Nanomater., 2012, 2012, pp. 10.
    147. 147)
    148. 148)
    149. 149)
    150. 150)
    151. 151)
    152. 152)
    153. 153)
    154. 154)
    155. 155)
    156. 156)
    157. 157)
    158. 158)
    159. 159)
    160. 160)
    161. 161)
    162. 162)
      • 112. Mullen, M.D., Wolf, D.C., Ferris, F.G., Beveridge, T.J., Flemming, C.A., Bailey, G.W.: ‘Bacterial sorption of heavy metals’, Appl. Environ. Microbiol., 1989, 55, (12), pp. 31433149.
    163. 163)
    164. 164)
      • 85. Cassette, E., Helle, M., Bezdetnaya, L., Marchal, F., Dubertret, B., Pons, T.: ‘Design of new quantum dot materials for deep tissue infrared imaging’, Adv. Drug Deliv. Rev., 2012.
    165. 165)
      • 126. Cunningham, D.P., Lundie, L.L. Jr.: ‘Precipitation of cadmium by Clostridium thermoaceticum’, Appl. Environ. Microbiol., 1993, 59, (1), pp. 714.
    166. 166)
    167. 167)
      • 115. Macaskie, L.E., Dean, A.C.: ‘Cadmium accumulation by a Citrobacter sp’, J. Gen. Microbiol., 1984, 130, (1), pp. 5362.
    168. 168)
      • 60. Clarke, S.J.: ‘Synthesis, biological targeting and photophysics of quantum dots’ (McGill University, 2008).
    169. 169)
    170. 170)
    171. 171)
    172. 172)
    173. 173)
    174. 174)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-nbt.2012.0028
Loading

Related content

content/journals/10.1049/iet-nbt.2012.0028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading