Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Electromagnetic optimisation using sensitivity analysis in the frequency domain

Electromagnetic optimisation using sensitivity analysis in the frequency domain

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Gradient-based optimisation relies on the response Jacobian whose evaluation constitutes a major computational overhead in full-wave numerical analysis. Adjoint-based techniques may offer numerically efficient solutions, but their implementation is too involved in the case of full-wave computations. A simple approach that uses the self-adjoint sensitivity analysis and Broyden's update is proposed. The overhead of the Jacobian computation is greatly reduced because an adjoint system analysis is not needed and because Broyden's update is used to compute the system matrix derivatives. To improve the robustness of the Broyden update in the sensitivity analysis, we propose a switching criterion between the Broyden and the finite-difference estimation of the system matrix derivatives. We illustrate and validate the proposed method using full-wave commercial electromagnetic solvers based on the finite-element method as well as on the method of moments. Different gradient-based optimisation algorithms are exploited in the examples where efficiency is compared in terms of CPU time savings.

References

    1. 1)
    2. 2)
      • N.K. Nikolova , M.H. Bakr , J.W. Bandler . Adjoint techniques for sensitivity analysis in high-frequency structure CAD. IEEE Trans. Microwave Theory Tech. , 1 , 403 - 419
    3. 3)
      • E.J. Haug , K.K. Choi , V. Komkov . (1986) Design sensitivity analysis of structural systems.
    4. 4)
      • N.K. Nikolova , J. Zhu , D. Li , M.H. Bakr , J.W. Bandler . Sensitivity analysis of network parameters with electromagnetic frequency-domain simulators. IEEE Trans. Microwave Theory Tech. , 2 , 670 - 681
    5. 5)
      • N.K. Nikolova , Y. Li , Y. Li , M.H. Bakr . Sensitivity analysis of scattering parameters with electromagnetic time-domain simulators. IEEE Trans. Microwave Theory Tech. , 4 , 1598 - 1610
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • D.G. Cacuci . (2003) Sensitivity and uncertainty analysis, Vol. 1: theory.
    10. 10)
      • FEMLAB®3.1 User's Guide, 2004 COMSOL, Inc., 8 New England Executive Park, Suite 310, Burlington, MA 01803, USA, http://www.comsol.com.
    11. 11)
      • C.G. Broyden . A class of methods for solving nonlinear simultaneous equations. Math. Comput. , 92 , 577 - 593
    12. 12)
      • J.E. Dennis , R.B. Schnabel . (1996) Numerical methods for unconstrained optimisation and nonlinear equations.
    13. 13)
      • J. Jin . (2002) The finite element method in electromagnetics.
    14. 14)
      • C.R. Vogel . (2002) Computational methods for inverse problems.
    15. 15)
    16. 16)
      • G. Matthaei , L. Young , E.M.T. Jones . (1980) Microwave filters, impedance–matching networks, and coupling structures.
    17. 17)
    18. 18)
      • N.K. Georgieva , S. Glavic , M.H. Bakr , J.W. Bandler . Feasible adjoint sensitivity technique for EM design optimisation,. IEEE Trans. Microwave Theory Tech. , 12 , 2751 - 2758
    19. 19)
      • A.D. Belegundu , T.R. Chandrupatla . (1999) Optimisation concepts and applications in engineering optimisation.
    20. 20)
    21. 21)
      • J.W. Bandler , W. Kellerman , K. Madsen . A superlinearly convergent minimax algorithm for microwave circuit design. IEEE Trans. Microwave Theory Tech. , 12 , 1519 - 1530
    22. 22)
      • FEKO® User's Manual, Suite 4.2, June 2004, EM Software and Systems-S.A. (Pty) Ltd, Stellenbosch, South Africa, http://www.feko.info. In the USA: EM Software and Systems (USA), Inc., Hampton, VA 23666, USA, http://www.emssusa.com/.
    23. 23)
      • ‘Mesh refinement’, FEKO Quarterly, December 2004.
    24. 24)
      • J.W. Bandler , S.H. Chen , S. Daijavad , K. Madsen . Efficient optimisation with integrated gradient approximations. IEEE Trans. Microwave Theory Tech. , 2 , 444 - 455
    25. 25)
      • P. Neittaanmäki , M. Rudnicki , A. Savini . (1996) Inverse problems and optimal design in electricity and magnetism.
    26. 26)
      • S.R. Arridge , M. Schweiger . Photon-measurement density functions. Part 2: finite-element-method calculations. Appl. Optics , 34 , 8026 - 8037
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map_20060303
Loading

Related content

content/journals/10.1049/iet-map_20060303
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address