Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Wideband high-gain millimetre/submillimetre wave antenna using additive manufacturing

This study presents a novel design of a wideband high-gain resonant cavity antenna (RCA) for millimetre and submillimetre wave bands, and its fabrication using additive manufacturing (AM). The proposed RCA antenna consists of a partially reflecting surface and three impedance matching layers fed by a waveguide. AM techniques are utilised to fabricate the design operating at 30 GHz. Two fabrication techniques are assessed for printing the antenna. The first technique is based on printing a dielectric material and fully coating the parts with a metallic layer, while the second technique involves printing the parts in a single process using metal three-dimensional printing. The first technique offers a lightweight solution while the second technique can print the whole model in one run. The antenna design is investigated by both simulations and experiments. The measured results show a 3 dB gain bandwidth of about 10%, and high gain over 15 dBi for all the three resulting antennas. Good agreement between simulation and measurement is obtained. The antenna is of low cost and achieved good performance in terms of wide bandwidth and high gain, thus it is potentially useful for high-speed wireless communications at millimetre-wave and sub-millimetre-wave frequencies.

References

    1. 1)
      • 2. Siegel, P.H.: ‘Terahertz technology’, IEEE Trans. Microw. Theory Tech., 2002, 50, (3), pp. 910928.
    2. 2)
      • 12. Novak, M.H., Miranda, F.A., Volakis, J.L.: ‘Ultra-wideband phased array for small satellite communications’, IET Microw. Antennas Propag., 2017, 11, (9), pp. 12341240.
    3. 3)
      • 25. Verploegh, S., Coffey, M., Grossman, E., et al: ‘Properties of 50–110-GHz waveguide components fabricated by metal additive manufacturing’, IEEE Trans. Microw. Theory Tech., 2017, 65, (12), pp. 51445153.
    4. 4)
      • 20. Abbou, D., Vuong, T.P., Touhami, R., et al: ‘High-gain wideband partially reflecting surface antenna for 60 GHz systems’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 27042707.
    5. 5)
      • 18. Qin, F., Gao, S., Luo, Q., et al: ‘A simple low-cost shared-aperture dual-band dual-polarized high-gain antenna for synthetic aperture radars’, IEEE Trans. Antennas Propag., 2016, 64, (7), pp. 29142922.
    6. 6)
      • 5. Gu, C., Gao, S., Sanz-Izquierdo, B.: ‘Wideband low-THz antennas for high-speed wireless communications’. 2017 IEEE-APS Topical Conf. on Antennas and Propagation in Wireless Communications (APWC), Verona, 2017, pp. 141145.
    7. 7)
      • 17. Wang, N., Liu, Q., Wu, C., et al: ‘Wideband fabry-perot resonator antenna with two complementary FSS layers’, IEEE Trans. Antennas Propag., 2014, 62, (5), pp. 24632471.
    8. 8)
      • 22. Gueye, M.B., Ouslimani, H.., Letestu, Y., et al: ‘Experimental study of 80 GHz Fabry-Pérot cavity antenna based on dual-layer partially reflected surface’, Electron. Lett., 2015, 51, (22), pp. 17301732.
    9. 9)
      • 3. Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., et al: ‘Short-range ultra-broadband terahertz communications: concepts and perspectives’, IEEE Antennas Propag. Mag., 2007, 49, (6), pp. 2439.
    10. 10)
      • 9. Gao, S.-C., Li, L.-W., Leong, M.-S., et al: ‘Wide-band microstrip antenna with an H-shaped coupling aperture’, IEEE Trans. Veh. Technol., 2002, 51, (1), pp. 1727.
    11. 11)
      • 24. Cai, F., Chang, Y.-H., Wang, K., et al: ‘Low-loss 3-D multilayer transmission lines and interconnects fabricated by additive manufacturing technologies’, IEEE Trans. Microw. Theory Tech., 2016, 64, (10), pp. 32083216.
    12. 12)
      • 11. Qin, P.-Y., Guo, Y.J., Weily, A.R.: ‘Broadband reflectarray antenna using subwavelength elements based on double square meander-line rings’, IEEE Trans. Antennas Propag., 2016, 64, (1), pp. 378383.
    13. 13)
      • 28. D'Auria, M., Otter, W.J., Hazell, J., et al: ‘3-D printed metal-pipe rectangular waveguides’, IEEE Trans. Compon. Packag. Manuf. Technol., 2015, 5, (9), pp. 13391349.
    14. 14)
      • 26. Jun, S.Y., Sanz-Izquierdo, B., Parker, E.A., et al: ‘Manufacturing considerations in the 3-D printing of fractal antennas’, IEEE Trans. Compon. Packag. Manuf. Technol., 2017, 7, (11), pp. 18911898.
    15. 15)
      • 7. Imbriale, W.A., Gao, S., Boccia, L.: ‘Space antenna handbook’ (Wiley & Sons, Chichester, 2012).
    16. 16)
      • 23. Xin, H., Liang, M.: ‘3-D-printed microwave and THz devices using polymer jetting techniques’, Proc. IEEE, 2017, 105, (4), pp. 737755.
    17. 17)
      • 19. Hosseini, A., Capolino, F., De Flaviis, F.: ‘Gain enhancement of a V-band antenna using a Fabry-Pérot cavity with a self-sustained all-metal cap with FSS’, IEEE Trans. Antennas Propag., 2015, 63, (3), pp. 909921.
    18. 18)
      • 14. Sallam, M.O., Kandil, S.M., Volski, V., et al: ‘Wideband CPW-fed flexible bow-tie slot antenna for WLAN/WiMax systems’, IEEE Trans. Antennas Propag., 2017, 65, (8), pp. 42744277.
    19. 19)
      • 27. Calignano, F., Manfredi, D., Ambrosio, E.P., et al: ‘Overview on additive manufacturing technologies’, Proc. IEEE, 2017, 105, (4), pp. 593612.
    20. 20)
      • 21. Attia, H., Abdelghani, M.L., Denidni, T.A.: ‘Wideband and high-gain millimeter-wave antenna based on FSS Fabry–Perot cavity’, IEEE Trans. Antennas Propag., 2017, 65, (10), pp. 55895594.
    21. 21)
      • 15. Trentini, G.V.: ‘Partially reflecting sheet arrays’, IRE Trans. Antennas Propag., 1956, 4, (4), pp. 666671.
    22. 22)
      • 6. Gu, C., Gao, S., Sanz-Izquierdo, B.: ‘Low-cost wideband low-THz antennas for wireless communications and sensing’. 2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT), Liverpool, 2017, pp. 14.
    23. 23)
      • 1. Rebeiz, G.M.: ‘Millimeter-wave and terahertz integrated circuit antennas’, Proc. IEEE, 1992, 80, (11), pp. 17481770.
    24. 24)
      • 13. Liu, H., Liu, Y., Zhang, W., et al: ‘An ultra-wideband horizontally polarized omnidirectional circular connected vivaldi antenna array’, IEEE Trans. Antennas Propag., 2017, 65, (8), pp. 43514356.
    25. 25)
      • 8. Tong, K.-F., Luk, K.-M., Lee, K.-F., et al: ‘A broad-band U-slot rectangular patch antenna on a microwave substrate’, IEEE Trans. Antennas Propag., 2000, 48, (6), pp. 954960.
    26. 26)
      • 16. Feresidis, A.P., Vardaxoglou, J.C.: ‘High gain planar antenna using optimised partially reflective surfaces’, IEE Proc., Microw. Antennas Propag., 2001, 148, (6), p. 345.
    27. 27)
      • 4. Rappaport, T. S., Sun, S., Mayzus, R., et al: ‘Millimeter wave mobile communications for 5G cellular: it will work!’, IEEE Access, 2013, 1, pp. 335349.
    28. 28)
      • 10. Zhu, F., Gao, S., Ho, A.T., et al: ‘Multiple band-notched UWB antenna with band-rejected elements integrated in the feed line’, IEEE Trans. Antennas Propag., 2013, 61, (8), pp. 39523960.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2018.5412
Loading

Related content

content/journals/10.1049/iet-map.2018.5412
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address