Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Computational investigation of power efficient plasma-based reconfigurable microstrip antenna

A cold plasma-based re-configurable rectangular microstrip antenna has been computationally investigated. A power efficient frequency tunable patch antenna design is proposed wherein the substrate is replaced by a combination of air and plasma slots. The novel design consisting of plasma elements in localised regions achieves good tunability with minimal power requirements. Significant amount of frequency reconfigurability is achieved by varying the plasma density and slot configuration. A parametric study comparing the approximate power requirements and tunability of different designs has been presented. Finally the radiation properties of the proposed microplasma-based microstrip antenna has been evaluated.

References

    1. 1)
      • 10. Hopwood, J., Iza, F., Coy, S., et al: ‘A microfabricated atmospheric-pressure microplasma source operating in air’, J. Phys. D, Appl. Phys., 2005, 38, pp. 16981703.
    2. 2)
      • 6. Cross, L.W., Almalkawi, M.J., Devabhaktuni, V.K.: ‘Theory and demonstration of narrowband bent hairpin filters integrated with AC coupled plasma limiter elements’, IEEE Trans. Electromagn. Compat., 2013, 55, (6), pp. 11001106.
    3. 3)
      • 20. Pascaud, R., Pizarro, F., Pascal, O., et al: ‘Theoretical and numerical study of a plasma-based frequency tunable microstrip antenna’. 8th European Conf. Antennas and Propagation (EuCAP), The Hague, Netherlands, 2014, pp. 15451546.
    4. 4)
      • 25. Sakai, O., Shimomura, T., Tachibana, K.: ‘Negative refractive index designed in a periodic composite of lossy microplasmas and microresonators’, Phys. Plasmas, 2010, 17, p. 123504.
    5. 5)
      • 18. Ghaffar, F.A., Shamim, A.: ‘A self-biased 3D tunable helical antenna in ferrite LTCC substrate’. 2015 IEEE Int. Symp. Antennas and Propagation USNC/URSI National Radio Science Meeting, Vancouver, BC, Canada, 2015, pp. 22912292.
    6. 6)
      • 7. Pascaud, R., Pizarro, F., Callegari, T., et al: ‘Plasma microdischarge as power-induced limiter element in microstrip devices’. Proc. 9th European Conf. Antennas and Propagation, EuCAP 2015, Lisbon, Portugal, 13 April–17 April 2015.
    7. 7)
      • 28. Dufour, G., Tiercelin, N., Khan, W.T., et al: ‘Large frequency tuning of a millimeter-wave antenna using dielectric liquids in integrated micro-channels’. IEEE MTT-S Int. Microwave Symp., Phoenix, AZ, USA, 2015, pp. 14.
    8. 8)
      • 2. Haupt, R.L., Lanagan, M.: ‘Reconfigurable antennas’, IEEE Antennas Propag. Mag., 2013, 55, (1), pp. 4961.
    9. 9)
      • 14. Mirzamohammadi, F., Nourinia, J., Ghobadi, C.: ‘A novel dual-wideband monopole-like microstrip antenna with controllable frequency response’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 289292.
    10. 10)
      • 24. Sakai, O., Sakaguchi, T., Tachibana, K.: ‘Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas’, Appl. Phys. Lett., 2005, 87, p. 241505.
    11. 11)
      • 21. Vidmar, R.J.: ‘On the use of atmospheric pressure plasmas as electromagnetic reactors and absorbers’, IEEE Trans. Plasma Sci., 1990, 18, (4), pp. 733740.
    12. 12)
      • 9. Stark, R.H., Schoenbach, K.H.: ‘Direct current glow discharges in atmospheric air’, Appl. Phys. Lett., 1999, 74, (25), pp. 37703772.
    13. 13)
      • 4. Sokoloff, J., Pascal, O., Callegari, T., et al: ‘Non-thermal plasma potentialities for microwave device reconfigurability’, C. R. Phys., 2014, 15, (5), pp. 468478.
    14. 14)
      • 13. Jilani, S.F., Greinke, B., Hao, Y., et al: ‘Flexible millimetre-wave frequency reconfigurable antenna for wearable applications in 5G networks’. 2016 URSI Int. Symp. Electromagnetic Theory (EMTS), Espoo, Finland, August 2016, pp. 1012.
    15. 15)
      • 19. Vyas, H., Chaudhury, B., Gupta, S.: ‘Computational investigation of microstrip antennas in plasma environment’. IEEE Applied Electromagnetics Conf. (AEMC), Guwahati, India, December 2015.
    16. 16)
      • 23. Pizarro, F., Pascaud, R., Pascal, O., et al: ‘Evaluation of microplasma discharges as active components for reconfigurable antennas’. 6th European Conf. Antennas and Propagation (EUCAP), Prague, Czech Republic, 2012, pp. 117119.
    17. 17)
      • 17. Polycarpou, A.C., Christou, M.A., Papanicolaou, N.C.: ‘Tunable patch antenna printed on a biased nematic liquid crystal cell’, IEEE Trans. Antennas Propag., 2014, 62, (10), pp. 49804987.
    18. 18)
      • 22. Chaudhury, B., Chaturvedi, S.: ‘Comparison of wave propagation studies in plasma using 3-D FDTD and ray tracing method’, Phys. Plasmas, 2006, 13, p. 123302.
    19. 19)
      • 11. Tachibana, K.: ‘Current status of microplasma research’, Trans. Inst. Electr. Eng. Jpn., 2006, 1, pp. 145155.
    20. 20)
      • 16. Pendharker, S., Shevgaonkar, R.K., Chandorkar, A.N.: ‘Optically controlled frequency-reconfigurable microstrip antenna with low photoconductivity’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 99102.
    21. 21)
      • 26. Chaudhury, B., Chaturvedi, S.: ‘Study and optimization of plasma-based radar cross section reduction using three-dimensional computations’, IEEE Trans. Plasma Sci., 2009, 37, (11), pp. 21162127.
    22. 22)
      • 8. Schoenbach, K.H., Becker, K.: ‘20 years of microplasma research: a status report’, Eur. Phys. J. D, 2016, 70, p. 29.
    23. 23)
      • 5. Semnani, A., Peroulis, D., Macheret, S.O.: ‘Plasma-enabled tuning of a resonant RF circuit’, IEEE Trans. Plasma Sci., 2016, 44, (8), pp. 13961404.
    24. 24)
      • 3. Semnani, A., Macheret, S.O., Peroulis, D.: ‘Tunable RF electronics based on low temperature plasma’. 2016 IEEE Int. Conf. Plasma Science (ICOPS), Banff, AB, Canada, June 2016, pp. 11.
    25. 25)
      • 1. Christodoulou, C.G., Tawk, Y., Lane, S.A., et al: ‘Reconfigurable antennas for wireless and space applications’, Proc. IEEE, 2012, 100, (7), pp. 22502261.
    26. 26)
      • 12. Balanis, C.A.: ‘Antenna theory: analysis and design’ (John Wiley Sons, New Jersey, USA, 1997, 2nd edn.).
    27. 27)
      • 15. Saghati, A., Azarmanesh, M., Zaker, R.: ‘A novel switchable single and multifrequency triple-slot antenna for 2.4-GHz bluetooth, 3.5-GHz WiMAX, 5.8-GHz WLAN’, IEEE Antennas Wirel. Propag. Lett., 2010, 9, pp. 534537.
    28. 28)
      • 27. Guha, D., Chattopadhyay, S., Siddiqui, J.Y.: ‘Estimation of gain enhancement replacing PTFE by air substrate in a microstrip patch antenna’, IEEE Antennas Propag. Mag., 2010, 52, (3), pp. 9295.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0729
Loading

Related content

content/journals/10.1049/iet-map.2017.0729
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address