http://iet.metastore.ingenta.com
1887

Aharonov–Bohm-inspired tomographic imaging via compressive sensing

Aharonov–Bohm-inspired tomographic imaging via compressive sensing

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The Aharonov–Bohm effect is a well-established quantum phenomenon that relates the behaviour of an electron not only to the local electromagnetic field but also to the associated potentials. An important consequence is that electron beams travelling through an arbitrary medium can carry information not only about the properties of the materials along with their trajectories but also about those of the entire background around them. Based on this established principle, the authors propose an inverse formulation for the estimation of a sample's magnetic permeability based on measurements of the wave function of a split electron beam. For one-dimensional distributions, the analysed concept is shown to lead to the ideal retrieval of the sample's texture for a sufficiently large number of measurements. Two- and three-dimensional permeability distributions can be successfully estimated by employing sparsification transformations associated with compressive imaging approaches. The proposed configuration and formulation may be useful in non-destructive detection and sensing of biological, chemical or ferrimagnetic samples.

References

    1. 1)
      • 1. Huang, D., Swanson, E.A., Lin, C.P., et al: ‘Optical coherence tomography’, Science, 1991, 22, pp. 11781181.
    2. 2)
      • 2. Sharpe, J., Ahlgren, U., Perry, P., et al: ‘Optical projection tomography as a tool for 3D microscopy and gene expression studies’, Science, 2002, 296, pp. 541545.
    3. 3)
      • 3. Ahmad, A., Shemonski, N.D., Adiel, S.G., et al: ‘Real-time in vivo computed optical interferometric tomography’, Nat. Photonics, 2013, 7, pp. 444448.
    4. 4)
      • 4. Holleitner, A.W., Decker, C.R., Qin, H., et al: ‘Coherent coupling of two quantum dots embedded in an Aharonov–Bohm interferometer’, Phys. Rev. Lett., 2001, pp. 14, no. 256802.
    5. 5)
      • 5. Modregger, P., Kagias, M., Peter, S., et al: ‘Multiple scattering tomography’, Phys. Rev. Lett., 2014, 113, pp. 14, no. 020801.
    6. 6)
      • 6. Candes, E.J., Wakin, M.B.: ‘An introduction to compressive sampling’, IEEE Signal Process. Mag., 2008, 25, pp. 2130.
    7. 7)
      • 7. Candes, E.J.: ‘Mathematics of sparsity (and few other things)’, Proc. Int. Congress Mathematicians, 2014, 123, pp. 127.
    8. 8)
      • 8. Rehacek, J., Hradil, Z., Bouchal, Z., et al: ‘Full tomography from compatible measurements’, Phys. Rev. Lett., 2009, 103, pp. 14, no. 250402.
    9. 9)
      • 9. Gross, D., Liu, Y.-K., Flammia, S.T., et al: ‘Quantum state tomography via compressed sensing’, Phys. Rev. Lett., 2010, 105, pp. 14, no. 150401.
    10. 10)
      • 10. Jullien, T., Roulleau, P., Roche, B., et al: ‘Quantum tomography of an electron’, Nature, 2014, 514, pp. 603607.
    11. 11)
      • 11. Rau, E.I., Yakimov, E.B.: ‘E-beam tomography of planar semiconductor structures’, Mater. Sci. Eng., 1996, 42, pp. 5256.
    12. 12)
      • 12. Chalut, K., Litvinenko, V.N., Pinayev, I.V.: ‘Method of phase-space tomography of rapidly evolving e-beams’, Phys. Rev. Spec. Top., Accel. Beams, 2005, pp. 17, no. 102802.
    13. 13)
      • 13. Aharonov, Y., Bohm, D.: ‘Significance of electromagnetic potentials in the quantum theory’, Phys. Rev., 1959, 115, pp. 485491.
    14. 14)
      • 14. Aharonov, Y., Anandan, J.: ‘Phase change during a cyclic quantum evolution’, Phys. Rev. Lett., 1987, 14, pp. 15931596.
    15. 15)
      • 15. Batelaan, H., Tonomura, A.: ‘The Aharonov–Bohm effects: variations on a subtle theme’, Phys. Today, 2009, 62, pp. 3843.
    16. 16)
      • 16. Valagiannopoulos, C.A., Askarpour, A.N., Alù, A.: ‘Guessing the texture of magnetic samples assisted by Aharonov–Bohm effect’, Phys. Rev. B, 2015, 92, p. 224414.
    17. 17)
      • 17. Washburn, S., Webb, R.A.: ‘Aharonov–Bohm effect in normal metal quantum coherence and transport’, Adv. Phys., 1986, 35, pp. 375422.
    18. 18)
      • 18. Bachtold, A., Strunk, C., Salvetat, J.-P., et al: ‘Aharonov–Bohm oscillations in carbon nanotubes’, Nature, 1999, 397, pp. 673675.
    19. 19)
      • 19. Midgley, P.A., Dunin-Borkowski, R.E.: ‘Electron tomography and holography in materials science’, Nat. Mater., 2009, 8, pp. 271280.
    20. 20)
      • 20. Phatak, C., Petford-Long, A.K., De Graef, M.: ‘Three-dimensional study of the vector potential of magnetic structures’, Phys. Rev. Lett., 2010, 104, pp. 14, no. 253901.
    21. 21)
      • 21. Phatak, C., Beleggia, M., De Graef, M.: ‘Vector field electron tomography of magnetic materials: theoretical development’, Ultramicroscopy, 2008, 108, pp. 503513.
    22. 22)
      • 22. Lade, S.J., Paganin, D., Morgan, M.J.: ‘Electron tomography of electromagnetic fields, potentials and sources’, Opt. Commun., 2005, 253, pp. 392400.
    23. 23)
      • 23. Wolf, D., Rodriguez, L.A., Beche, A., et al: ‘3D magnetic induction maps of nanoscale materials revealed by electron holographic tomography’, Chem. Mater., 2015, 27, pp. 67716778.
    24. 24)
      • 24. Morgan, A.B., Gilman, J.W.: ‘Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: A comparative study’, J. Appl. Polym. Sci., 2003, 87, pp. 13291338.
    25. 25)
      • 25. Ercius, P., Alaidi, O., Rames, M.J., et al: ‘Electron tomography: a three-dimensional analytic tool for hard and soft materials research’, Adv. Mater., 2015, 38, pp. 56385663.
    26. 26)
      • 26. Ngo, D.-T., Kuhn, L.T.: ‘In situ transmission electron microscopy for magnetic nanostructures’, Adv. Nat. Sci., Nanosci. Nanotechnol., 2016, 7, pp. 116, no. 045001.
    27. 27)
      • 27. Splettstoesser, J., Samuelsson, P., Moskalets, M., et al: ‘Two-particle Aharonov–Bohm effect in electronic interferometers’, J. Phys. A, Math. Theor., 2010, 43, no. 354027.
    28. 28)
      • 28. Neder, I., Ofek, N., Chung, Y., et al: ‘Interference between two indistinguishable electrons from independent sources’, Nature, 2007, 448, pp. 333337.
    29. 29)
      • 29. Valagiannopoulos, C.A., Alù, A., Dimakis, A., et al: ‘Guessing the texture of magnetic samples assisted by Aharonov–Bohm effect’. Proc. 10th European Conf. on Antennas and Propagation (EuCAP), Davos, Switzerland, 2016.
    30. 30)
      • 30. Lundeen, J.S., Sutherland, B., Patel, A., et al: ‘Direct measurement of the quantum wavefunction’, Nature, 2011, 474, pp. 188191.
    31. 31)
      • 31. Lundeen, J.S., Bamber, C.: ‘Procedure for direct measurement of general quantum states using weak measurement’, Phys. Rev. Lett., 2012, 108, p. 070402.
    32. 32)
      • 32. Lozev, K.: ‘Numerical solution of the tomography problem in the presence of obstacles’, Int. J. Tomogr. Simul., 2013, 24, pp. 498504.
    33. 33)
      • 33. Donoho, D.L.: ‘Compressed sensing’, IEEE Trans. Inf. Theory, 2006, 52, pp. 12891306.
    34. 34)
      • 34. Candes, E.J., Romberg, J., Tao, T.: ‘Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information’, IEEE Trans. Inf. Theory, 2006, 52, pp. 489509.
    35. 35)
      • 35. Duarte, M.F., Davenport, M.A., Takhar, D., et al: ‘Single-pixel imaging via compressive sampling’, IEEE Signal Process. Mag., 2008, 25, pp. 8391.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0609
Loading

Related content

content/journals/10.1049/iet-map.2017.0609
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address