Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Effect of added resonators in RFID system at 13.56 MHz

In this study, a reader antenna including resonators is proposed to improve detection of a small moving tag in the case of tracking a radiofrequency identification (RFID) system. The near-field RFID technology is based on load modulation, the input impedance on the reader coil and the mutual inductance between the reader and tag coils are the main parameters for performing detection. They are calculated from the impedance matrix parameters. The added resonators change all the parameters of the impedance matrix consequently the input impedance and mutual inductance are also changed. In this study, analytical formulation defining the equivalent impedance matrix parameters is developed. These formulae are used to evaluate the performance of the proposed design according to the tag misalignment (lateral and angular). From the calculation and simulation results, a frequency shift in the equivalent input impedance is found. To avoid this problem, optimising the positioning of the resonators on the reader coil is performed. This study is confirmed by measures of RFID detection for a reader prototype (with and without resonators) and a small commercial tag. Both the surface and volume of detection of the small moving tag (lateral and angular misalignment) are improved by the principle of added resonators.

References

    1. 1)
      • 7. Babic, S.I., Sirois, F., Akyel, C.: ‘Validity check of mutual inductance formulas for circular filaments with lateral and angular misalignments’, Prog. Electromagn. Res., 2009, 8, pp. 1526.
    2. 2)
      • 18. Finkenzeller, K.: ‘RFID handbook : Fundamentals and applications in contactless smart cards and identification’ (Wiley, New York, 2003, 3rd edn.).
    3. 3)
      • 13. Fotopoulou, K., Flynn, B.W.: ‘Wireless power transfer in loosely coupled links: coil misalignment model’, IEEE Trans. Magn., 2011, 47, pp. 416430.
    4. 4)
      • 11. Diet, A., Grzeskowiak, M., Le Bihan, Y., et al: ‘Improving LF reader antenna volume of detection, for RFID token tag, with a combination of ICLs and in/out-of phase multiple-loops structures’. IEEE RFID Technology and Applications Conf. (RFID-TA), 2014, pp. 208213.
    5. 5)
      • 15. Grzeskowiak, M., Diet, A., Diao, P.S., et al: ‘Pebbles tracking thanks to RFID LF multi-loops inductively coupled reader’, Prog. Electromagn. Res. C, 2014, 55, pp. 129137.
    6. 6)
      • 4. Jow, U.M., McMenamin, P., Kiani, M., et al: ‘Enercage: a smart experimental arena with scalable architecture for behavioral experiments’, IEEE Trans. Biomed. Eng., 2014, 61, pp. 139148.
    7. 7)
      • 8. Zierhofer, C., Hochmair, E.: ‘Geometric approach for coupling enhancement of magnetically coupled coils’, IEEE Trans. Biomed. Eng., 1996, 43, pp. 708714.
    8. 8)
      • 5. Wang, C.S., Stielau, O.H., Covic, G.A.: ‘Design considerations for a contactless electric vehicle battery charger’, IEEE Trans. Ind. Electron., 2005, 52, pp. 13081314.
    9. 9)
      • 19. Hackl, S., Lanschützer, C., Raggam, P., et al: ‘A novel method for determining the mutual inductance for 13.56 MHz RFID systems’, Commun. Syst. Netw. Digit. Signal Process., 2008, pp. 297300.
    10. 10)
      • 16. D'hoe, K., Goemaere, J., Stevens, N., et al: ‘Automated design of an HF RFID loop antenna based on parametric geometry modification’. IEEE Int. Conf. on RFID, 2014, pp. 17.
    11. 11)
      • 6. Jang, Y., Jovanovic, M.M.: ‘A contactless electrical energy transmission system for portable-telephone battery chargers’, IEEE Ind. Electron., 2003, 50, pp. 520527.
    12. 12)
      • 10. Berger, A., Agostinelli, M., Vesti, S., et al: ‘A planar magnetically coupled resonant wireless power transfer system using printed spiral coils’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 16481651.
    13. 13)
      • 14. Eteng, A.A., Rahim, S.K.A., Leow, C.Y., et al: ‘Loop antenna design for lateral H-field uniformity in misaligned HF-RFID links’. IEEE Symp. on Wireless Technology & Applications (ISWTA), 2014, pp. 9295.
    14. 14)
      • 12. Hwang, H., Moon, J., Lee, B., et al: ‘An analysis of magnetic resonance coupling effects on wireless power transfer by coil inductance and placement’, IEEE Trans. Consum. Electron., 2014, 60, pp. 203209.
    15. 15)
      • 2. Kim, S., Ho, J.S., Poon, A.S.: ‘Wireless power transfer to miniature implants: transmitter optimization’, IEEE Trans. Antennas Propag., 2012, 60, pp. 48384845.
    16. 16)
      • 17. Benamara, M., Grzeskowiak, M., Diet, A., et al: ‘Calculation of the equivalent mutual impedance in complex HF RFID systems’. IEEE Int. Conf. on Applied Electromagnetics and Communications (ICECOM), Dubrovnik, 2016.
    17. 17)
      • 1. Berger, A., Agostinelli, M., Vesti, S., et al: ‘A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extractable power’, IEEE Trans. Power Electron., 2015, 30, pp. 63366348.
    18. 18)
      • 3. Ho, J.S., Kim, S., Poon, A.S.: ‘Midfield wireless powering for implantable systems’, Proc. IEEE, 2015, 101, pp. 13691378.
    19. 19)
      • 20. Benamara, M., Grzeskowiak, M., Diet, A., et al: ‘Reader antenna including resonators for HF RFID detection’. 2016 Loughborough Antennas & Propagation Conf. (LAPC), 2016.
    20. 20)
      • 9. Wang, B., Yerazunis, W., Teo, K.H.: ‘Wireless power transfer: metamaterials and array of coupled resonators’, Proc. IEEE, 2013, 101, pp. 13591368.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0500
Loading

Related content

content/journals/10.1049/iet-map.2017.0500
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address