Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Modelling cascaded cylindrical metasurfaces using sheet impedances and a transmission matrix formulation

Metasurfaces that manipulate electromagnetic waves have gained significant attention in recent years. The focus has primarily been on planar devices, while many applications require curved surfaces. In this study, the authors propose an analysis approach for cylindrical cascaded (multilayer) metasurfaces. The approach combines the concept of sheet impedance in the spectral domain with a new transmission matrix formulation that is applicable to stratified, canonical curved geometries. Approximate formulas for the sheet impedance of common planar, metallic patterns are also adapted to curved geometries. The reported analysis approach allows one to determine the optimal spectral-domain, azimuthal dependence of a sheet impedance, as well as the best geometrical elements to obtain the required azimuthal variation. The results are verified through several cylindrical metsurface examples.

References

    1. 1)
      • 19. Vellucci, S., Monti, A., Toscano, A., et al: ‘Scattering manipulation and camouflage of electrically small objects through metasurfaces’, Phys. Rev. Appl., 2017, 7, pp. 112, Art. ID 034032.
    2. 2)
      • 5. Maci, S., Minatti, G., Casaletti, M., et al: ‘Metasurfing: addressing waves on impenetrable metasurfaces’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 14991502.
    3. 3)
      • 4. Pfeiffer, C., Grbic, A.: ‘Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets’, Phys. Rev. Lett., 2013, 110, pp. 15, Art. ID 197401.
    4. 4)
      • 17. Padooru, Y.R., Yakovlev, A.B., Chen, P.-Y., et al: ‘Line-source excitation of realistic conformal metasurface cloaks’, J. Appl. Phys., 2012, 112, pp. 111, Art. ID 104902.
    5. 5)
      • 15. Raeker, B.O., Rudolph, S.M.: ‘Verification of arbitrary radiation pattern control using a cylindrical impedance metasurface’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 995998.
    6. 6)
      • 23. Pozar, D.M.: ‘Microwave engineering’ (John Wiley & Sons, Hoboken, 2011).
    7. 7)
      • 6. Kuester, E.F., Mohamed, M.A., Piket-May, M., et al: ‘Averaged transition conditions for electromagnetic fields at a metafilm’, IEEE Trans. Antennas Propag., 2003, 51, pp. 26412651.
    8. 8)
      • 1. Munk, B.A.: ‘Frequency selective surfaces: theory and design’ (John Wiley& Sons, Hoboken, 2005).
    9. 9)
      • 21. Luukkonen, O., Simovski, C.R., Grant, G., et al: ‘Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches’, IEEE Trans. Antennas Propag., 2008, 56, pp. 16241632.
    10. 10)
      • 20. Sipus, Z., Raffaelli, S., Kildal, P.-S.: ‘Periodic strips on planar and circular cylindrical substrates: exact and asymptotic analysis’, Microw. Opt. Technol. Lett., 1998, 7, pp. 173178.
    11. 11)
      • 11. Selvanayagam, M., Eleftheriades, G.V.: ‘Polarization control using tensor huygens surfaces’, IEEE Trans. Antennas Propag., 2014, 62, pp. 61556168.
    12. 12)
      • 3. Pfeiffer, C., Grbic, A.: ‘Bianisotropic metasurfaces for optimal polarization control: analysis and synthesis’, Phys. Rev. Appl., 2014, 2, pp. 111, Art. ID 044011.
    13. 13)
      • 10. Niemi, T., Karilainen, A., Tretyakov, S.: ‘Synthesis of polarization transformers’, IEEE Trans. Antennas Propag., 2013, 61, pp. 31023111.
    14. 14)
      • 13. Elek, F., Tierney, B.B., Grbic, A.: ‘Synthesis of printed-circuit tensor impedance surfaces controlling phase and power flow’, IEEE Trans. Antennas Propag., 2015, 63, pp. 39563962.
    15. 15)
      • 8. Pfeiffer, C., Grbic, A.: ‘Cascaded metasurfaces for complete phase and polarization control’, Appl. Phys. Lett., 2013, 102, pp. 14Art. ID 231116.
    16. 16)
      • 9. Monticone, F., Estakhri, N.M., Alù, A.: ‘Full control of nanoscale optical transmission with a composite metascreen’, Phys. Rev. Lett., 2013, 110, pp. 15, Art. ID 203903.
    17. 17)
      • 16. Chen, P.-Y., Alù, A.: ‘Mantle cloaking using thin patterned metasurfaces’, Phys. Rev. B, 2011, 84, pp. 113, Art. ID 205110.
    18. 18)
      • 2. Holloway, C.L., Kuester, E.F., Gordon, J., et al: ‘An overview of the theory and applications of metasurfaces: the twodimensional equivalents of metamaterials’, IEEE Antennas Propag. Mag., 2012, 54, pp. 1035.
    19. 19)
      • 14. Raeker, B.O., Rudolph, S.M.: ‘Arbitrary transformation of antenna radiation using a cylindrical impedance metasurface’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 11011104.
    20. 20)
      • 12. Patel, A.M., Grbic, A.: ‘Transformation electromagnetics devices based on printed-circuit tensor impedance surfaces’, IEEE Trans. Microw. Theory Tech., 2014, 62, pp. 11021111.
    21. 21)
      • 18. Soric, J.C., Monti, A., Toscano, A., et al: ‘Dual-polarized reduction of dipole antenna blockage using mantle cloaks’, IEEE Trans. Antennas Propag., 2015, 63, pp. 48274834.
    22. 22)
      • 7. Zhao, Y., Belkin, M.A., Alù, A.: ‘Twisted optical metamaterials for planarized ultrathin broadband circular polarizers’, Nat. Commun., 2012, 3, pp. 870876.
    23. 23)
      • 24. Vardaxoglou, J.C.: ‘Frequency selective surfaces’ (Research Studies Press Ltd., Taunton, England, 1997).
    24. 24)
      • 25. Shuley, N.V.: ‘Higher-order mode interaction in planar periodic structures’, Proc. IEE-H, 1984, 131, pp. 129132.
    25. 25)
      • 22. Simovski, C.R., De Maagt, P., Melchakova, I.V.: ‘High-impedance surfaces having stable resonance with respect to polarization and incidence angle’, IEEE Trans. Antennas Propag., 2005, 53, pp. 908914.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0465
Loading

Related content

content/journals/10.1049/iet-map.2017.0465
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address