Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Flexible UWB organic antenna for wearable technologies application

New generations of printed flexible antennas are playing an important role in wireless communication systems. The ultra wide band and wearable possibilities are critical aspects of these kinds of antennas. In this study, the proposed antenna is an elliptical monopole fed by a coplanar waveguide; it uses a kapton substrate and it is optimised to work from 1 to 8 GHz. In the case of copper, a conductive nanocomposite material based on a polymer (polyaniline: PANI) and charged by multiwalled carbon nanotubes (MWCNTs) is exploited. The flexibility of both the kapton substrate and the nanocomposite (PANI/MWCNTs) provides the ability to crumple the antenna paving the way to potential applications for body-worn wireless communications systems. In this study, the performance of the antenna is investigated in terms of return loss, radiation patterns and gain for both crumpled and uncrumpled antennas. The results confirm that performance remains at a good level when the antenna is crumpled.

References

    1. 1)
      • 18. Oueiny, C., Berlioz, S., Perrin, F.X.: ‘Carbon nanotube–polyaniline composites’, Prog. Polym. Sci., 2014, 39, (4), pp. 707748.
    2. 2)
      • 23. Cao, Y., Smith, P., Heeger, A.J.: ‘Counter-ion induced processibility of conducting polyaniline’, Synth. Met., 1993, 57, (1), pp. 35143519.
    3. 3)
      • 19. Hamouda, Z., Wojkiewicz, J.L., Pud, A.A., et al: ‘CPW-fed dual band monopole antenna based on conductive polymers’. 9th European Conf. Antennas and Propagation (EuCAP 2015), Portugal, Lisbon, May 2015, pp. 14.
    4. 4)
      • 7. Wang, Z., Zhang, L., Bayram, Y., et al: ‘Embroidered conductive fibers on polymer composite for conformal antennas’, IEEE Trans. Antennas Propag., 2012, 60, (9), pp. 41414147.
    5. 5)
      • 27. Khaleel, H.R., Al Rizzo, H.M., Rucker, D.G., et al: ‘A compact polyimide-based UWB antenna for flexible electronics’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 564567.
    6. 6)
      • 16. Chen, S.J., Kaufmann, T., Shepherd, R., et al: ‘A compact, highly efficient and flexible polymer ultra-wideband antenna’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 12071210.
    7. 7)
      • 29. Cutler, L.D., Gershbein, R., Wang, X.C., et al: ‘An art-directed wrinkle system for CG character clothing’. Proc. ACM SIGGRAPH/Eurographics Symp. Computer Animation, July 2005, pp. 117125.
    8. 8)
      • 1. Haiwen, L., Shuangshuang, Z., Pin, W., et al: ‘Flexible CPW-fed fishtail-shaped antenna for dual-band applications’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 770773.
    9. 9)
      • 2. Bai, Q., Langley, R.: ‘Crumpling of PIFA textile antenna’, IEEE Trans. Antennas Propag., 2012, 60, (1), pp. 6370.
    10. 10)
      • 15. Kaufmann, T., Verma, A., Truong, V.T., et al: ‘Efficiency of a compact elliptical planar ultra-wideband antenna based on conductive polymers’, Int. J. Antennas Propag., 2012, pp. 111.
    11. 11)
      • 3. Liu, L., Zhu, S., Langley, R.: ‘Dual-band triangular patch antenna with modified ground plane’, Electron. Lett., 2007, 43, (3), pp. 140141.
    12. 12)
      • 26. Sun, Y., Cheung, S.W., Yuk, T.I.: ‘Design of a textile ultra-wideband antenna with stable performance for body-centric wireless communications’, IET Microw. Antennas Propag., 2014, 8, (15), pp. 13631375.
    13. 13)
      • 20. Hamouda, Z., Wojkiewicz, J.L., Pud, A.A., et al: ‘Design fabrication and characterisation of polyaniline and multiwall carbon nanotubes composites-based patch antenna’, IET Microw. Antennas Propag., 2016, 10, (1), pp. 8893.
    14. 14)
      • 10. Janeczek, K., Jakubowska, M., Kozioł, G., et al: ‘Investigation of ultra-high-frequency antennas printed with polymer pastes on flexible substrates’, IET Microw. Antennas Propag., 2012, 6, (5), pp. 549555.
    15. 15)
      • 22. Hamouda, Z., Wojkiewicz, J.L., Pud, A.A., et al: ‘Development of a patch antenna based on a polyaniline/carbon coated cobalt composite’. 10th European Conf. Antennas and Propagation (EuCAP 2016), Davos, Switzerland, April 2016, pp. 14.
    16. 16)
      • 13. Fenelon, A.M., Breslin, C.B.: ‘The electrochemical synthesis of polypyrrole at a copper electrode: corrosion protection properties’, Electrochim. Acta, 2002, 47, (28), pp. 44674476.
    17. 17)
      • 28. Wang, C.J., Hsiao, K.L.: ‘CPW-fed monopole antenna for multiple system integration’, IEEE Trans. Antennas Propag., 2014, 62, (2), pp. 10071011.
    18. 18)
      • 6. Lin, C.P., Chang, C.H., Cheng, Y.T., et al: ‘Development of a flexible SU-8/PDMS-based antenna’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 11081111.
    19. 19)
      • 17. Chen, S.J., Fumeaux, C., Talemi, P., et al: ‘Progress in conductive polymer antennas based on free-standing polypyrrole and PEDOT: PSS’. IEEE, 17th Int. Symp. Antenna Technology and Applied Electromagnetics (ANTEM), Montreal, Canada, July 2016, pp. 14.
    20. 20)
      • 4. Nikolaou, S., Ponchak, G.E., Papapolymerou, J., et al: ‘Conformal double exponentially tapered slot antenna (DETSA) on LCP for UWB applications’, IEEE Trans. Antennas Propag., 2006, 54, (6), pp. 16631669.
    21. 21)
      • 25. Sarkar, D., Srivastava, K.V., Saurav, K.: ‘A compact microstrip-fed triple band-notched UWB monopole antenna’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 396399.
    22. 22)
      • 8. Khaleel, H.R., Al-Rizzo, H.M., Rucker, D.G.: ‘Compact polyimide-based antennas for flexible displays’, J. Disp. Technol., 2012, 8, (2), pp. 9197.
    23. 23)
      • 11. Mebdipour, A., Rosca, I.D., Sebak, A.R., et al: ‘Carbon nanotube composites for wideband milimetrer-wave antenna application’, IEEE Trans. Antenna Propag., 2011, 59, pp. 35723578.
    24. 24)
      • 14. Iroh, J.O., Zhu, Y., Shah, K., et al: ‘Electrochemical synthesis: a novel technique for processing multi-functional coatings’, Prog. Org. Coat., 2003, 47, (3), pp. 365375.
    25. 25)
      • 24. Hoang, N.H., Wojkiewicz, J.L., Miane, J.L., et al: ‘Lightweight electromagnetic shields using optimized polyaniline composites in the microwave band’, Polym. Adv. Technol., 2007, 18, (4), pp. 257262.
    26. 26)
      • 21. Hamouda, Z., Wojkiewicz, J.L., Pud, A.A., et al: ‘Dual band elliptical planar conductive polymer antenna printed on a flexible substrate’, IEEE Trans. Antennas Propag., 2015, 63, (12), pp. 58645867.
    27. 27)
      • 5. DeJean, G., Bairavasubramanian, R., Thompson, D., et al: ‘Liquid crystal polymer (LCP): a new organic material for the development of multilayer dual-frequency/dual-polarization flexible antenna arrays’, IEEE Antennas Wirel. Propag. Lett., 2005, 4, (1), pp. 2226.
    28. 28)
      • 9. Kiourti, A., Volakis, J.L.: ‘Stretchable and flexible E-fiber wire antennas embedded in polymer’, IEEE Antennas Wirel. Propag. Lett., 2014, 13, pp. 13811384.
    29. 29)
      • 12. Elobaid, H.A.E., Rahim, S.K.A., Himdi, M., et al: ‘A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks’, IEEE Antennas Wirel. Propag. Lett., 2017, 16, pp. 13331336.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0189
Loading

Related content

content/journals/10.1049/iet-map.2017.0189
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address