Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Computational microwave imaging using 3D printed conductive polymer frequency-diverse metasurface antennas

A frequency-diverse computational imaging system synthesised using three-dimensional (3D) printed frequency-diverse metasurface antennas is demonstrated. The 3D fabrication of the antennas is achieved using a combination of polylactic acid (PLA) polymer material and conductive polymer material (Electrifi), circumventing the requirement for expensive and time-consuming conventional fabrication techniques, such as machine milling, photolithography, and laser-etching. Using the 3D printed frequency-diverse metasurface antennas, a composite aperture is designed and simulated for imaging in the K-band frequency regime (17.5–26.5 GHz). The frequency-diverse system is capable of imaging by means of a simple frequency-sweep in an all-electronic manner, avoiding mechanical scanning and active circuit components. Using the synthesised system, microwave imaging of objects is achieved at the diffraction limit. It is also demonstrated that the conductivity of the Electrifi polymer material significantly affects the performance of the 3D printed antennas and therefore is a critical factor governing the fidelity of the reconstructed images.

References

    1. 1)
      • 6. Nikolova, N.K.: ‘Microwave imaging for breast cancer’, IEEE Microw. Mag., 2011, 12, (7), pp. 7894.
    2. 2)
      • 9. Zhuge, X., Yarovoy, A.G.: ‘A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection’, IEEE Trans. Geosci. Remote Sens., 2011, 49, (1), pp. 509518.
    3. 3)
      • 5. Elsdon, M., Yurduseven, O., Smith, D.: ‘Early stage breast cancer detection using indirect microwave holography’, Prog. Electromagn. Res., 2013, 143, pp. 405419.
    4. 4)
      • 15. Yurduseven, O., Gollub, J., Marks, D., et al: ‘Frequency-diverse microwave imaging using planar Mills-cross cavity apertures’, Opt. Express, 2016, 24, (8), pp. 89078925.
    5. 5)
      • 38. Du, G., Liang, M., Sabory-Garcia, R.A., et al: ‘3-D printing implementation of an X-band Eaton lens for beam deflection’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 14871490.
    6. 6)
      • 3. Caorsi, S., Massa, A., Pastorino, M., et al: ‘Improved microwave imaging procedure for nondestructive evaluations of two-dimensional structures’, IEEE Trans. Antennas Propag., 2004, 52, (6), pp. 13861397.
    7. 7)
      • 10. Yurduseven, O.: ‘Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems’, Prog. Electromagn. Res., 2014, 146, pp. 713.
    8. 8)
      • 20. Yurduseven, O., Imani, M.F., Odabasi, H., et al: ‘Resolution of the frequency diverse metamaterial aperture imager’, Prog. Electromagn. Res., 2015, 150, pp. 97107.
    9. 9)
      • 4. Kharkovsky, S., Zoughi, R.: ‘Microwave and millimeter wave nondestructive testing and evaluation – overview and recent advances’, IEEE Instrum. Meas. Mag., 2007, 10, (2), pp. 2638.
    10. 10)
      • 12. Withington, S., Saklatvala, G., Hobson, M.P.: ‘Partially coherent analysis of imaging and interferometric phase arrays: noise, correlations, and fluctuations’, J. Opt. Soc. Am. A, 2006, 23, (6), pp. 13401348.
    11. 11)
      • 18. Lipworth, G., Rose, A., Yurduseven, O., et al: ‘Comprehensive simulation platform for a metamaterial imaging system’, Appl. Opt., 2015, 54, (31), pp. 93439353.
    12. 12)
      • 23. Yurduseven, O., Gowda, V.R., Gollub, J.N., et al: ‘Multistatic microwave imaging with arrays of planar cavities’, IET Microw. Antennas Propag., 2016, 10, (11), pp. 11741181.
    13. 13)
      • 21. Fromenteze, T., Yurduseven, O., Imani, M.F., et al: ‘Computational imaging using a mode-mixing cavity at microwave frequencies’, Appl. Phys. Lett., 2015, 106, p. 194104.
    14. 14)
      • 2. Ralston, T.S., Charvat, G.L., Peabody, J.E.: ‘Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (MIMO) phased array radar system’. IEEE Int. Symp. on Phased Array Systems and Technology, 2010, pp. 551558.
    15. 15)
      • 47. Pastorino, M.: ‘Microwave imaging’ (Wiley, 2010).
    16. 16)
      • 11. Ku, B.H., Schmalenberg, P., Inac, O., et al: ‘A 77–81-GHz 16-element phased-array receiver with ±50° beam scanning for advanced automotive radars’, IEEE Trans. Microw. Theory Tech., 2014, 62, (11), pp. 28232832.
    17. 17)
      • 29. Yurduseven, O., Marks, D.L., Fromenteze, T., et al: ‘Millimeter-wave spotlight imager using dynamic holographic metasurface antennas’, Opt. Express, 2017, 25, (15), pp. 1823018249.
    18. 18)
      • 48. ‘Bruker Dektak 150’. Available at https://www.brukersupport.com/ProductDetail/1135, accessed 26 July 2017.
    19. 19)
      • 17. Lipworth, G., Mrozack, A., Hunt, J., et al: ‘Metamaterial apertures for coherent computational imaging on the physical layer’, J. Opt. Soc. Am. A, 2013, 30, (8), pp. 16031612.
    20. 20)
      • 34. Welsh, S., Edgar, M., Bowman, R., et al: ‘Fast full-color computational imaging with single-pixel detectors’, Opt. Express, 2013, 21, (20), pp. 2306823074.
    21. 21)
      • 41. Bioucas-Dias, J.M., Figueiredo, M.A.T.: ‘A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration’, IEEE Trans. Image Process., 2007, 16, (12), pp. 29923004.
    22. 22)
      • 25. Marks, D.L., Yurduseven, O., Smith, D.R.: ‘Fourier accelerated multistatic imaging: a fast reconstruction algorithm for multiple-input-multiple-output (MIMO) radar imaging’, IEEE Access, 2017, 5, pp. 17961809.
    23. 23)
      • 43. ‘Dglass3D’. Available at http://www.dglass3d.com/products/autolift-hot-ends, accessed 8 February 2017.
    24. 24)
      • 35. Liang, M., Shemelya, C., MacDonald, E., et al: ‘3-D printed microwave patch antenna via fused deposition method and ultrasonic wire mesh embedding technique’, IEEE Antennas Wirel. Propag. Lett., 2015, 14, pp. 13461349.
    25. 25)
      • 37. Nayeri, P., Liang, M., Sabory-Garcia, R.A., et al: ‘3D printed dielectric reflectarrays: low-cost high-gain antennas at sub-millimeter waves’, IEEE Trans. Antennas Propag., 2014, 62, (4), pp. 20002008.
    26. 26)
      • 26. Marks, D.L., Yurduseven, O., Smith, D.R.: ‘Hollow cavity metasurface aperture antennas and their application to frequency diversity imaging’, J. Opt. Soc. Am. A, 2017, 34, (4), pp. 472480.
    27. 27)
      • 28. Gollub, J.N., Yurduseven, O., Trofatter, K.P., et al: ‘Large metasurface aperture for millimeter wave computational imaging at the human-scale’, Sci. Rep., 2017, 7, p. 42650.
    28. 28)
      • 22. Yurduseven, O., Gowda, V.R., Gollub, J., et al: ‘Printed aperiodic cavity for computational microwave imaging’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (5), pp. 367369.
    29. 29)
      • 27. Yurduseven, O., Gollub, J.N., Rose, A., et al: ‘Design and simulation of a frequency-diverse aperture for imaging of human-scale targets’, IEEE Access, 2016, 4, pp. 54365451.
    30. 30)
      • 7. Sheen, D.M., McMakin, D.L., Hall, T.E.: ‘Three-dimensional millimeter-wave imaging for concealed weapon detection’, IEEE Trans. Microw. Theory Tech., 2001, 49, (9), pp. 15811592.
    31. 31)
      • 33. Duarte, M.F., Davenport, M.A., Takhar, D., et al: ‘Single-pixel imaging via compressive sampling’, IEEE Signal Process. Mag., 2008, 25, (2), pp. 8391.
    32. 32)
      • 30. Shrekenhamer, D., Watts, C.M., Padilla, W.J.: ‘Terahertz single pixel imaging with an optically controlled dynamic spatial light modulator’, Opt. Express, 2013, 21, (10), pp. 1250712518.
    33. 33)
      • 36. Gillatt, B.T.W., D'Auria, M., Otter, W.J., et al: ‘3-D printed variable phase shifter’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (10), pp. 822824.
    34. 34)
      • 16. Hunt, J., Driscoll, T., Mrozack, A., et al: ‘Metamaterial apertures for computational imaging’, Science, 2013, 339, (6117), pp. 310313.
    35. 35)
      • 32. Cossairt, O., Miau, D., Nayar, S.: ‘Scaling law for computational imaging using spherical optics’, J. Opt. Soc. Am. A, 2011, 28, (12), pp. 25402553.
    36. 36)
      • 1. Yazhou, W., Fathy, A. E.: ‘Advanced system level simulation platform for three-dimensional UWB through-wall imaging SAR using time-domain approach’, IEEE Trans. Geosci. Rem. Sens., 2012, 50, (5), pp. 19862000.
    37. 37)
      • 40. Barrett, R., Berry, M., Chan, T.F., et al: ‘Templates for the solution of linear systems: building blocks for iterative methods’ (Society for Industrial and Applied Mathematics, 1987, 1st edn.).
    38. 38)
      • 45. Doerry, A.W., Dickey, F.M.: ‘Synthetic aperture radar’, Opt. Photonics News, 2004, 15, (11), pp. 2833.
    39. 39)
      • 8. Martinez-Lorenzo, J.A., Quivira, F., Rappaport, C.M.: ‘SAR imaging of suicide bombers wearing concealed explosive threats’, Prog. Electromagn. Res., 2012, 125, pp. 255272.
    40. 40)
      • 42. ‘D-Bot Core-XY 3D Printer’. Available at http://www.thingiverse.com/thing:1001065, accessed 8 February 2017.
    41. 41)
      • 44. ‘BuildTak’. Available at https://www.buildtak.com/product/buildtak-3d-printing-surface, accessed 8 February 2017.
    42. 42)
      • 19. Hunt, J., Gollub, J., Driscoll, T., et al: ‘Metamaterial microwave holographic imaging system’, J. Opt. Soc. Am. A, 2014, 31, (10), pp. 21092119.
    43. 43)
      • 24. Yurduseven, O., Gollub, J.N., Trofatter, K.P., et al: ‘Software calibration of a frequency-diverse, multistatic, computational imaging system’, IEEE Access, 2016, 4, pp. 24882497.
    44. 44)
      • 46. Moreira, A., Prats-Iraola, P., Younis, M., et al: ‘A tutorial on synthetic aperture radar’, IEEE Geosci. Rem. Sens. Mag., 2013, 1, (1), pp. 643.
    45. 45)
      • 14. Marks, D.L., Gollub, J., Smith, D.R.: ‘Spatially resolving antenna arrays using frequency diversity’, J. Opt. Soc. Am. A, 2016, 33, (5), pp. 899912.
    46. 46)
      • 13. Fenn, A.J., Temme, D.H., Delaney, W.P., et al: ‘The development of phased array radar technology’, Linc. Lab. J., 2000, 12, (2), pp. 321340.
    47. 47)
      • 31. Shin, D., Kirmani, A., Goyal, V.K., et al: ‘Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors’, IEEE Trans. Comput. Imaging, 2015, 1, (2), pp. 112125.
    48. 48)
      • 39. ‘MULTI3D’. Available at https://www.multi3dllc.com, accessed 8 February 2017.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2017.0104
Loading

Related content

content/journals/10.1049/iet-map.2017.0104
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address