http://iet.metastore.ingenta.com
1887

Dual-frequency impedance matching networks based on two-section transmission line

Dual-frequency impedance matching networks based on two-section transmission line

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a practical and useful dual-frequency property of two-section transmission line (TSTL) terminated into a real impedance is reported. Moreover, to demonstrate some of its potential applications for the performance enhancement in dual-frequency impedance transformation problems, modified L- and T-type dual-frequency matching networks are presented. Specifically, the property is used to modify the conventional L-type matching network to improve its transformation-ratio and frequency-ratio performance. Furthermore, improvement in conventional dual-frequency T-type matching network is also demonstrated through the incorporation of the TSTL. All the results are analytical and in closed form with simple design equations. For validation, prototypes of the proposed L- and T-type matching networks operating concurrently at 1 GHz/1.45GHz and 1 GHz/2GHz, respectively, are designed and fabricated on FR-4 substrate. The obtained simulated and measured results clearly exhibit the usefulness of the proposed design schemes.

References

    1. 1)
      • 1. Pozar, D.M.: ‘Microwave engineering’ (John Wiley & Sons, 2010, 3rd edn.).
    2. 2)
      • 2. ‘Freescale Appl. Note AN721’. Available at http://cache.freescale.com/files/rf_if/doc/app_note/AN721.pdf, accessed 15 March 2016.
    3. 3)
      • 3. Rawat, K., Hashmi, M.S., Ghannouchi, F.M.: ‘Dual-band RF circuits and components for multi-standard software defined radios’, IEEE Circuits Syst. Mag., 2012, 12, (1), pp. 1232.
    4. 4)
      • 4. Gómez-García, R., Ghannouchi, F.M., Carvalho, N.B., et al: ‘Advanced circuits and systems for CR/SDR applications’, IEEE J. Sel. Emerg. Top. Circuits Syst., 2013, 3, (4), pp. 485488.
    5. 5)
      • 5. Liu, Z., Zhong, Z., Guo, Y.-X.: ‘Enhanced dual-band ambient RF energy harvesting with ultra-wide power range’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (9), pp. 630632.
    6. 6)
      • 6. Shariati, N., Rowe, W.S.T., Scott, J.R., et al: ‘Multi-service highly sensitive rectifier for enhanced RF energy scavenging’, Nature Sci. Rep., 2015, 5, doi: 10.1038/srep09655, Art. no. 9655.
    7. 7)
      • 7. Tang, C.-W., Hsieh, Z.Q.: ‘Design of a planar dual-band power divider with arbitrary power division and a wide isolated frequency band’, IEEE Trans. Microw. Theory Tech., 2016, 64, (2), pp. 486492.
    8. 8)
      • 8. Pang, J., He, S., Huang, C., et al: ‘A novel design of concurrent dual-band high efficiency power amplifiers with harmonic control circuits’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (2), pp. 137139.
    9. 9)
      • 9. Chow, Y.L., Wan, K.L.: ‘A transformer of one-third wavelength in two sections-for a frequency and its first harmonic’, IEEE Microw. Wirel. Compon. Lett., 2002, 12, (1), pp. 2223.
    10. 10)
      • 10. Monzon, C.: ‘A small dual-frequency transformer in two sections’, IEEE Trans. Microw. Theory Tech., 2003, 51, (4), pp. 11571161.
    11. 11)
      • 11. Sophocles, J., Orfanidis, A.: ‘Two-section dual-band Chebyshev impedance transformer’, IEEE Microw. Wirel. Compon. Lett., 2003, 13, (9), pp. 382384.
    12. 12)
      • 12. Castaldi, G.: ‘An exact synthesis method for dual-band Chebyshev impedance transformers’, Prog. Electromagn. Res., 2008, 86, pp. 305319.
    13. 13)
      • 13. Wu, Y., Liu, Y., Li, S.: ‘A compact Pi-structure dual band transformer’, Prog. Electromagn. Res., 2008, 88, pp. 121134.
    14. 14)
      • 14. Park, M.J., Lee, B.: ‘Dual band design of single stub impedance matching networks with application to dual band stubbed T junctions’, Microw. Opt. Techol. Lett., 2010, 52, (6), pp. 13591362.
    15. 15)
      • 15. Colantonio, P., Giannini, F., Scucchia, L.: ‘A new approach to design matching networks with distributed elements’. Proc. 15th IEEE MIKON Conf., May 2004, pp. 811814.
    16. 16)
      • 16. Wu, Y., Liu, Y., Li, S.: ‘A dual-frequency transformer for complex impedances with two unequal sections’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (2), pp. 7779.
    17. 17)
      • 17. Dutta Roy, S.C.: ‘Comment on “a dual-frequency transformer for complex impedances with two unequal sections”’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (9), p. 602.
    18. 18)
      • 18. Liu, X., Liu, Y., Li, S.F.: ‘A three-section dual-band transformer for frequency-dependent complex load impedance’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (10), pp. 611613.
    19. 19)
      • 19. Wu, Y., Liu, Y., Li, S.: ‘A generalized dual-frequency transformer for two arbitrary complex frequency-dependent impedances’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (12), pp. 792794.
    20. 20)
      • 20. Chuang, M.-L.: ‘Dual-band impedance transformer using two-section shunt stubs’, IEEE Trans. Microw. Theory Tech., 2010, 58, (5), pp. 12571263.
    21. 21)
      • 21. Manoochehri, O., Asoodeh, A., Forooraghi, K.: ‘Pi -model dual-band impedance transformer for unequal complex impedance loads’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (4), pp. 238240.
    22. 22)
      • 22. Nikravan, M.A., Atlasbaf, Z.: ‘T-section dual-band impedance transformer for frequency-dependent complex impedance loads’, IET Electron. Lett., 2011, 47, (9), pp. 551553.
    23. 23)
      • 23. Rawat, K., Ghannouchi, F.M.: ‘Dual-band matching technique based on dual-characteristic impedance transformers for dual-band power amplifiers design’, IET Microw. Antennas Propag., 2011, 5, (14), pp. 17201729.
    24. 24)
      • 24. Chuang, M.-L.: ‘Analytical design of dual-band impedance transformer with additional transmission zero’, IET Microw. Antennas Propag., 2014, 8, (13), pp. 11201126.
    25. 25)
      • 25. Maktoomi, M.A., Hashmi, M.S., Panwar, V.: ‘A dual-frequency matching network for FDCLs using dual-band λ/4-lines’, Prog. Electromagn. Res. Lett., 2015, 52, pp. 2330.
    26. 26)
      • 26. Fu, X., Bespalko, D.T., Boumaiza, S.: ‘Novel dual-band matching network for effective design of concurrent dual-band power amplifiers’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2014, 61, (1), pp. 293301.
    27. 27)
      • 27. Wu, Y., Jiao, L., Liu, Y.: ‘Comments on ‘novel dual-band matching network for effective design of concurrent dual-band power amplifiers’’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (9), pp. 23612361.
    28. 28)
      • 28. Li, S., Tang, B., Liu, Y., et al: ‘Miniaturized dual-band matching technique based on coupled-line transformer for dual-band power amplifiers design’, Prog. Electromagn. Res., 2012, 131, pp. 195210.
    29. 29)
      • 29. Wu, Y., Liu, Y., Li, S., et al: ‘New coupled-line dual-band dc-block transformer for arbitrary complex frequency-dependent load impedance’, Microw. Opt. Technol. Lett., 2012, 54, (1), pp. 139142.
    30. 30)
      • 30. Wu, Y., Sun, W., Leung, S.-W.: ‘A novel compact dual-frequency coupled-line transformer with simple analytical design equations for frequency-dependent complex load impedance’, Prog. Electromagn. Res., 2013, 134, pp. 4762.
    31. 31)
      • 31. Maktoomi, M.A., Hashmi, M.S.: ‘A coupled-line based l-section DC-isolated dual-band real to real impedance transformer and its application to a dual-band T-junction power divider’, Prog. Electromagn. Res. C, 2014, 55, pp. 95104.
    32. 32)
      • 32. Maktoomi, M.A., Hashmi, M.S., Ghannouchi, F.M.: ‘A T-section dual-band matching network for frequency-dependent complex loads incorporating coupled line with DC-block property suitable for dual-band transistor amplifiers’, Prog. Electromagn. Res. C, 2014, 54, pp. 7584.
    33. 33)
      • 33. Moon, B.-T., Myung, N.-H.: ‘A dual-band impedance transforming technique with lumped elements for frequency-dependent complex loads’, Prog. Electromagn. Res., 2013, 136, pp. 123139.
    34. 34)
      • 34. Hsieh, K.-A., Wu, H.-S., Tsai, K.-H., et al: ‘A dual-band 10/24-GHz amplifier design incorporating dual-frequency complex load matching’, IEEE Trans. Microw. Theory Tech., 2012, 60, (6), pp. 16491657.
    35. 35)
      • 35. Paredes, F., Gonzalez, G.Z., Bonache, J., et al: ‘Dual-band impedance-matching networks based on split-ring resonators for applications in RF identification (RFID)’, IEEE Trans. Microw. Theory Tech., 2010, 58, (5), pp. 11591166.
    36. 36)
      • 36. Nallam, N., Chatterjee, S.: ‘Multi-band frequency transformations, matching networks and amplifiers’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (6), pp. 16351647.
    37. 37)
      • 37. Dutta Roy, S.C.: ‘Characteristics of single- and multiple-frequency impedance matching networks’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2015, 62, (3), pp. 222225.
    38. 38)
      • 38. Gómez-García, R., Psychogiou, D., Peroulis, D.: ‘Reconfigurable single/multi-band planar impedance transformers with incorporated bandpass filtering functionality’. 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, CA, 2016, pp. 14.
    39. 39)
      • 39. Loeches-Sánchez, R., Psychogiou, D., Gómez-García, R., et al: ‘Transformers with incorporated filtering capabilities exploiting signal-interference principles’. 2015 IEEE Int. Conf. on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), Tel Aviv, 2015, pp. 15.
    40. 40)
      • 40. Maktoomi, M.A., Hashmi, M.S., Ghannouchi, F.M.: ‘Improving load range of dual-band impedance matching networks using novel load-healing concept’. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2017, 64, (2), pp. 126130.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2016.0941
Loading

Related content

content/journals/10.1049/iet-map.2016.0941
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address