http://iet.metastore.ingenta.com
1887

Dual-frequency impedance matching networks based on two-section transmission line

Dual-frequency impedance matching networks based on two-section transmission line

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a practical and useful dual-frequency property of two-section transmission line (TSTL) terminated into a real impedance is reported. Moreover, to demonstrate some of its potential applications for the performance enhancement in dual-frequency impedance transformation problems, modified L- and T-type dual-frequency matching networks are presented. Specifically, the property is used to modify the conventional L-type matching network to improve its transformation-ratio and frequency-ratio performance. Furthermore, improvement in conventional dual-frequency T-type matching network is also demonstrated through the incorporation of the TSTL. All the results are analytical and in closed form with simple design equations. For validation, prototypes of the proposed L- and T-type matching networks operating concurrently at 1 GHz/1.45GHz and 1 GHz/2GHz, respectively, are designed and fabricated on FR-4 substrate. The obtained simulated and measured results clearly exhibit the usefulness of the proposed design schemes.

References

    1. 1)
      • D.M. Pozar . (2010)
        1. Pozar, D.M.: ‘Microwave engineering’ (John Wiley & Sons, 2010, 3rd edn.).
        .
    2. 2)
      • 2. ‘Freescale Appl. Note AN721’. Available at http://cache.freescale.com/files/rf_if/doc/app_note/AN721.pdf, accessed 15 March 2016.
        .
    3. 3)
      • K. Rawat , M.S. Hashmi , F.M. Ghannouchi .
        3. Rawat, K., Hashmi, M.S., Ghannouchi, F.M.: ‘Dual-band RF circuits and components for multi-standard software defined radios’, IEEE Circuits Syst. Mag., 2012, 12, (1), pp. 1232.
        . IEEE Circuits Syst. Mag. , 1 , 12 - 32
    4. 4)
      • R. Gómez-García , F.M. Ghannouchi , N.B. Carvalho .
        4. Gómez-García, R., Ghannouchi, F.M., Carvalho, N.B., et al: ‘Advanced circuits and systems for CR/SDR applications’, IEEE J. Sel. Emerg. Top. Circuits Syst., 2013, 3, (4), pp. 485488.
        . IEEE J. Sel. Emerg. Top. Circuits Syst. , 4 , 485 - 488
    5. 5)
      • Z. Liu , Z. Zhong , Y.-X. Guo .
        5. Liu, Z., Zhong, Z., Guo, Y.-X.: ‘Enhanced dual-band ambient RF energy harvesting with ultra-wide power range’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (9), pp. 630632.
        . IEEE Microw. Wirel. Compon. Lett. , 9 , 630 - 632
    6. 6)
      • N. Shariati , W.S.T. Rowe , J.R. Scott .
        6. Shariati, N., Rowe, W.S.T., Scott, J.R., et al: ‘Multi-service highly sensitive rectifier for enhanced RF energy scavenging’, Nature Sci. Rep., 2015, 5, doi: 10.1038/srep09655, Art. no. 9655.
        . Nature Sci. Rep.
    7. 7)
      • C.-W. Tang , Z.Q. Hsieh .
        7. Tang, C.-W., Hsieh, Z.Q.: ‘Design of a planar dual-band power divider with arbitrary power division and a wide isolated frequency band’, IEEE Trans. Microw. Theory Tech., 2016, 64, (2), pp. 486492.
        . IEEE Trans. Microw. Theory Tech. , 2 , 486 - 492
    8. 8)
      • J. Pang , S. He , C. Huang .
        8. Pang, J., He, S., Huang, C., et al: ‘A novel design of concurrent dual-band high efficiency power amplifiers with harmonic control circuits’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (2), pp. 137139.
        . IEEE Microw. Wirel. Compon. Lett. , 2 , 137 - 139
    9. 9)
      • Y.L. Chow , K.L. Wan .
        9. Chow, Y.L., Wan, K.L.: ‘A transformer of one-third wavelength in two sections-for a frequency and its first harmonic’, IEEE Microw. Wirel. Compon. Lett., 2002, 12, (1), pp. 2223.
        . IEEE Microw. Wirel. Compon. Lett. , 1 , 22 - 23
    10. 10)
      • C. Monzon .
        10. Monzon, C.: ‘A small dual-frequency transformer in two sections’, IEEE Trans. Microw. Theory Tech., 2003, 51, (4), pp. 11571161.
        . IEEE Trans. Microw. Theory Tech. , 4 , 1157 - 1161
    11. 11)
      • J. Sophocles , A. Orfanidis .
        11. Sophocles, J., Orfanidis, A.: ‘Two-section dual-band Chebyshev impedance transformer’, IEEE Microw. Wirel. Compon. Lett., 2003, 13, (9), pp. 382384.
        . IEEE Microw. Wirel. Compon. Lett. , 9 , 382 - 384
    12. 12)
      • G. Castaldi .
        12. Castaldi, G.: ‘An exact synthesis method for dual-band Chebyshev impedance transformers’, Prog. Electromagn. Res., 2008, 86, pp. 305319.
        . Prog. Electromagn. Res. , 305 - 319
    13. 13)
      • Y. Wu , Y. Liu , S. Li .
        13. Wu, Y., Liu, Y., Li, S.: ‘A compact Pi-structure dual band transformer’, Prog. Electromagn. Res., 2008, 88, pp. 121134.
        . Prog. Electromagn. Res. , 121 - 134
    14. 14)
      • M.J. Park , B. Lee .
        14. Park, M.J., Lee, B.: ‘Dual band design of single stub impedance matching networks with application to dual band stubbed T junctions’, Microw. Opt. Techol. Lett., 2010, 52, (6), pp. 13591362.
        . Microw. Opt. Techol. Lett. , 6 , 1359 - 1362
    15. 15)
      • P. Colantonio , F. Giannini , L. Scucchia .
        15. Colantonio, P., Giannini, F., Scucchia, L.: ‘A new approach to design matching networks with distributed elements’. Proc. 15th IEEE MIKON Conf., May 2004, pp. 811814.
        . Proc. 15th IEEE MIKON Conf. , 811 - 814
    16. 16)
      • Y. Wu , Y. Liu , S. Li .
        16. Wu, Y., Liu, Y., Li, S.: ‘A dual-frequency transformer for complex impedances with two unequal sections’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (2), pp. 7779.
        . IEEE Microw. Wirel. Compon. Lett. , 2 , 77 - 79
    17. 17)
      • S.C. Dutta Roy .
        17. Dutta Roy, S.C.: ‘Comment on “a dual-frequency transformer for complex impedances with two unequal sections”’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (9), p. 602.
        . IEEE Microw. Wirel. Compon. Lett. , 9 , 602
    18. 18)
      • X. Liu , Y. Liu , S.F. Li .
        18. Liu, X., Liu, Y., Li, S.F.: ‘A three-section dual-band transformer for frequency-dependent complex load impedance’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (10), pp. 611613.
        . IEEE Microw. Wirel. Compon. Lett. , 10 , 611 - 613
    19. 19)
      • Y. Wu , Y. Liu , S. Li .
        19. Wu, Y., Liu, Y., Li, S.: ‘A generalized dual-frequency transformer for two arbitrary complex frequency-dependent impedances’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (12), pp. 792794.
        . IEEE Microw. Wirel. Compon. Lett. , 12 , 792 - 794
    20. 20)
      • M.-L. Chuang .
        20. Chuang, M.-L.: ‘Dual-band impedance transformer using two-section shunt stubs’, IEEE Trans. Microw. Theory Tech., 2010, 58, (5), pp. 12571263.
        . IEEE Trans. Microw. Theory Tech. , 5 , 1257 - 1263
    21. 21)
      • O. Manoochehri , A. Asoodeh , K. Forooraghi .
        21. Manoochehri, O., Asoodeh, A., Forooraghi, K.: ‘Pi -model dual-band impedance transformer for unequal complex impedance loads’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (4), pp. 238240.
        . IEEE Microw. Wirel. Compon. Lett. , 4 , 238 - 240
    22. 22)
      • M.A. Nikravan , Z. Atlasbaf .
        22. Nikravan, M.A., Atlasbaf, Z.: ‘T-section dual-band impedance transformer for frequency-dependent complex impedance loads’, IET Electron. Lett., 2011, 47, (9), pp. 551553.
        . IET Electron. Lett. , 9 , 551 - 553
    23. 23)
      • K. Rawat , F.M. Ghannouchi .
        23. Rawat, K., Ghannouchi, F.M.: ‘Dual-band matching technique based on dual-characteristic impedance transformers for dual-band power amplifiers design’, IET Microw. Antennas Propag., 2011, 5, (14), pp. 17201729.
        . IET Microw. Antennas Propag. , 14 , 1720 - 1729
    24. 24)
      • M.-L. Chuang .
        24. Chuang, M.-L.: ‘Analytical design of dual-band impedance transformer with additional transmission zero’, IET Microw. Antennas Propag., 2014, 8, (13), pp. 11201126.
        . IET Microw. Antennas Propag. , 13 , 1120 - 1126
    25. 25)
      • M.A. Maktoomi , M.S. Hashmi , V. Panwar .
        25. Maktoomi, M.A., Hashmi, M.S., Panwar, V.: ‘A dual-frequency matching network for FDCLs using dual-band λ/4-lines’, Prog. Electromagn. Res. Lett., 2015, 52, pp. 2330.
        . Prog. Electromagn. Res. Lett. , 23 - 30
    26. 26)
      • X. Fu , D.T. Bespalko , S. Boumaiza .
        26. Fu, X., Bespalko, D.T., Boumaiza, S.: ‘Novel dual-band matching network for effective design of concurrent dual-band power amplifiers’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2014, 61, (1), pp. 293301.
        . IEEE Trans. Circuits Syst. I, Regul. Pap. , 1 , 293 - 301
    27. 27)
      • Y. Wu , L. Jiao , Y. Liu .
        27. Wu, Y., Jiao, L., Liu, Y.: ‘Comments on ‘novel dual-band matching network for effective design of concurrent dual-band power amplifiers’’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (9), pp. 23612361.
        . IEEE Trans. Circuits Syst. I, Regul. Pap. , 9 , 2361 - 2361
    28. 28)
      • S. Li , B. Tang , Y. Liu .
        28. Li, S., Tang, B., Liu, Y., et al: ‘Miniaturized dual-band matching technique based on coupled-line transformer for dual-band power amplifiers design’, Prog. Electromagn. Res., 2012, 131, pp. 195210.
        . Prog. Electromagn. Res. , 195 - 210
    29. 29)
      • Y. Wu , Y. Liu , S. Li .
        29. Wu, Y., Liu, Y., Li, S., et al: ‘New coupled-line dual-band dc-block transformer for arbitrary complex frequency-dependent load impedance’, Microw. Opt. Technol. Lett., 2012, 54, (1), pp. 139142.
        . Microw. Opt. Technol. Lett. , 1 , 139 - 142
    30. 30)
      • Y. Wu , W. Sun , S.-W. Leung .
        30. Wu, Y., Sun, W., Leung, S.-W.: ‘A novel compact dual-frequency coupled-line transformer with simple analytical design equations for frequency-dependent complex load impedance’, Prog. Electromagn. Res., 2013, 134, pp. 4762.
        . Prog. Electromagn. Res. , 47 - 62
    31. 31)
      • M.A. Maktoomi , M.S. Hashmi .
        31. Maktoomi, M.A., Hashmi, M.S.: ‘A coupled-line based l-section DC-isolated dual-band real to real impedance transformer and its application to a dual-band T-junction power divider’, Prog. Electromagn. Res. C, 2014, 55, pp. 95104.
        . Prog. Electromagn. Res. C , 95 - 104
    32. 32)
      • M.A. Maktoomi , M.S. Hashmi , F.M. Ghannouchi .
        32. Maktoomi, M.A., Hashmi, M.S., Ghannouchi, F.M.: ‘A T-section dual-band matching network for frequency-dependent complex loads incorporating coupled line with DC-block property suitable for dual-band transistor amplifiers’, Prog. Electromagn. Res. C, 2014, 54, pp. 7584.
        . Prog. Electromagn. Res. C , 75 - 84
    33. 33)
      • B.-T. Moon , N.-H. Myung .
        33. Moon, B.-T., Myung, N.-H.: ‘A dual-band impedance transforming technique with lumped elements for frequency-dependent complex loads’, Prog. Electromagn. Res., 2013, 136, pp. 123139.
        . Prog. Electromagn. Res. , 123 - 139
    34. 34)
      • K.-A. Hsieh , H.-S. Wu , K.-H. Tsai .
        34. Hsieh, K.-A., Wu, H.-S., Tsai, K.-H., et al: ‘A dual-band 10/24-GHz amplifier design incorporating dual-frequency complex load matching’, IEEE Trans. Microw. Theory Tech., 2012, 60, (6), pp. 16491657.
        . IEEE Trans. Microw. Theory Tech. , 6 , 1649 - 1657
    35. 35)
      • F. Paredes , G.Z. Gonzalez , J. Bonache .
        35. Paredes, F., Gonzalez, G.Z., Bonache, J., et al: ‘Dual-band impedance-matching networks based on split-ring resonators for applications in RF identification (RFID)’, IEEE Trans. Microw. Theory Tech., 2010, 58, (5), pp. 11591166.
        . IEEE Trans. Microw. Theory Tech. , 5 , 1159 - 1166
    36. 36)
      • N. Nallam , S. Chatterjee .
        36. Nallam, N., Chatterjee, S.: ‘Multi-band frequency transformations, matching networks and amplifiers’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (6), pp. 16351647.
        . IEEE Trans. Circuits Syst. I, Regul. Pap. , 6 , 1635 - 1647
    37. 37)
      • S.C. Dutta Roy .
        37. Dutta Roy, S.C.: ‘Characteristics of single- and multiple-frequency impedance matching networks’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2015, 62, (3), pp. 222225.
        . IEEE Trans. Circuits Syst. II, Exp. Briefs , 3 , 222 - 225
    38. 38)
      • R. Gómez-García , D. Psychogiou , D. Peroulis .
        38. Gómez-García, R., Psychogiou, D., Peroulis, D.: ‘Reconfigurable single/multi-band planar impedance transformers with incorporated bandpass filtering functionality’. 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, CA, 2016, pp. 14.
        . 2016 IEEE MTT-S Int. Microwave Symp. (IMS) , 1 - 4
    39. 39)
      • R. Loeches-Sánchez , D. Psychogiou , R. Gómez-García .
        39. Loeches-Sánchez, R., Psychogiou, D., Gómez-García, R., et al: ‘Transformers with incorporated filtering capabilities exploiting signal-interference principles’. 2015 IEEE Int. Conf. on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), Tel Aviv, 2015, pp. 15.
        . 2015 IEEE Int. Conf. on Microwaves, Communications, Antennas and Electronic Systems (COMCAS) , 1 - 5
    40. 40)
      • M.A. Maktoomi , M.S. Hashmi , F.M. Ghannouchi .
        40. Maktoomi, M.A., Hashmi, M.S., Ghannouchi, F.M.: ‘Improving load range of dual-band impedance matching networks using novel load-healing concept’. IEEE Trans. Circuits Syst. II, Exp. Briefs, 2017, 64, (2), pp. 126130.
        . IEEE Trans. Circuits Syst. II, Exp. Briefs , 2 , 126 - 130
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2016.0941
Loading

Related content

content/journals/10.1049/iet-map.2016.0941
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address