Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Aperture-coupled microstrip patch antenna fed by orthogonal SIW line for millimetre-wave imaging applications

A new microstrip patch antenna feeding technique for millimetre-wave imaging applications is proposed. The technique utilises a substrate integrated waveguide line that orthogonally feeds the patch antenna through a coupling aperture. A rectangular microstrip patch antenna was designed to operate at 32 GHz. Measurement and simulation results for rectangular patch antenna are presented showing good agreement with 9% bandwidth (|S 11| < −10 dB). The aperture-coupled rectangular patch antenna provided 5.5 dBi gain and 72% efficiency at the design frequency. Finally, the rectangular patch antenna is used for near-field and wideband synthetic aperture radar imaging to demonstrate the potential of the proposed antenna for imaging applications at millimetre wave frequencies.

References

    1. 1)
      • 13. Kumar, P., Luis Masa-Campos, J.: ‘Waveguide fed circular microstrip patch antenna for Ku band applications’, Microw. Opt. Technol. Lett., 2015, 57, (3), pp. 585589.
    2. 2)
      • 6. Targonski, S.D., Waterhouse, R.B., Pozar, D.M.: ‘Design of wide-band aperture-stacked patch microstrip antennas’, IEEE Trans. Antennas Propag., 1998, 46, (9), pp. 12451251.
    3. 3)
      • 9. Kharkovsky, S., Ghasr, M.T., Kam, K., et al: ‘Out-of-plane fed elliptical slot array for microwave imaging’, IEEE Trans. Antennas Propag., 2013, 61, (10), pp. 53115314.
    4. 4)
      • 21. Mikulasek, T., Lacik, J.: ‘Two feeding methods based on substrate integrated waveguide for microstrip patch antennas’, IET Microw. Antennas Propag., 2015, 9, (5), pp. 423430.
    5. 5)
      • 3. Hoshi, N., Nikawa, Y., Kawai, K., et al: ‘Application of microwaves and millimeter waves for the characterization of teeth for dental diagnosis and treatment’, IEEE Trans. Microw. Theory Tech., 1998, 46, (6), pp. 834838.
    6. 6)
      • 20. Marcuvitz, N.: ‘Waveguide handbook’, IEE Electromagnetic Wave Series 21, 1986.
    7. 7)
      • 17. Kazemi, R., Fathy, A.E., Sadeghzadeh, R.A.: ‘Dielectric rod antenna array with substrate integrated waveguide planar feed network for wideband applications’, IEEE Trans. Antennas Propag., 2012, 60, (3), pp. 13121319.
    8. 8)
      • 2. Ghasr, M.T., Kharkovsky, S., Bohnert, R., et al: ‘30 GHz linear high-resolution and rapid millimeter wave imaging system for NDE’, IEEE Trans. Antennas Propag., 2013, 61, (9), pp. 47334740.
    9. 9)
      • 22. Nguyen, M., Kim, B., Choo, H., et al: ‘Effects of ground plane size on a square microstrip patch antenna designed on a low-permittivity substrate with an air gap’. 2010 IEEE Int. Workshop on Antenna Technology (iWAT), 2010, pp. 14.
    10. 10)
      • 11. Baumgartner, M.A., Ghasr, M.T., Zoughi, R.: ‘Wideband imaging array using orthogonally fed dual varactor-loaded elliptical slots’, IEEE Trans. Instrum. Meas., 2015, 64, (3), pp. 740749.
    11. 11)
      • 4. Pozar, D.M.: ‘Microstrip antennas’, Proc. IEEE, 1992, 80, (1), pp. 7991.
    12. 12)
      • 14. Deslandes, D., Wu, K.: ‘Integrated microstrip and rectangular waveguide in planar form’, IEEE Microw. Wirel. Compon. Lett., 2001, 11, (2), pp. 6870.
    13. 13)
      • 23. Abou-Khousa, M., Ghasr, M.T., Kharkovsky, S., et al: ‘Modulated elliptical slot antenna for electric field mapping and microwave imaging’, IEEE Trans. Antennas Propag., 2011, 59, (3), pp. 733741.
    14. 14)
      • 10. Kharkovsky, S., Ghasr, M.T., Kam, K., et al: ‘Microwave resonant out-of-plane fed elliptical slot antenna for imaging applications’. Proc. of the IEEE Int. Instrumentation and Measurement Technology Conf. (I2MTC 2011), Binjiang, Hangzhou, China, 10–12 May 2011, pp. 389392.
    15. 15)
      • 8. Herscovici, N., Pozar, D.M.: ‘Full-wave solution for an aperture-coupled patch fed by perpendicular coplanar strips’, IEEE Trans. Antennas Propag., 1994, 42, (4), pp. 544547.
    16. 16)
      • 5. Pozar, D.M., Kaufman, B.: ‘Increasing the bandwidth of a microstrip antenna by proximity coupling’, Electron. Lett., 1987, 23, (8), pp. 368369.
    17. 17)
      • 1. Moosazadeh, M., Kharkovsky, S., Case, J.T.: ‘Microwave and millimetre wave antipodal Vivaldi antenna with trapezoid-shaped dielectric lens for imaging of construction materials’, IET Microw. Antennas Propag., 2015, 10, (3), pp. 301309.
    18. 18)
      • 24. Ghasr, M.T., Abou-Khousa, M.A., Kharkovsky, S., et al: ‘Portable real-time microwave camera at 24 GHz’, IEEE Trans. Antennas Propag., 2012, 60, (2), pp. 11141125.
    19. 19)
      • 18. Bozzi, M., Georgiadis, A., Wu, K.: ‘Review of substrate-integrated waveguide circuits and antennas’, IET Microw. Antennas Propag., 2011, 5, (8), pp. 909920.
    20. 20)
      • 7. Buck, A.C., Pozar, D.M.: ‘Aperture-coupled microstrip antenna with a perpendicular feed’, Electron. Lett., 1986, 22, (3), pp. 125126.
    21. 21)
      • 16. Case, J.T., Ghasr, M.T., Zoughi, R.: ‘Optimum 2D uniform spatial sampling for microwave SAR-based NDE imaging systems’, IEEE Trans. Instrum. Meas., 2011, 60, (12), pp. 38063815.
    22. 22)
      • 19. Balanis, C.A.: ‘Antenna theory: analysis and design’ (John Wiley and Sons, New York, 2005, 3rd edn.).
    23. 23)
      • 12. Ho, M.-H., Hsu, C.-I.G.: ‘Circular-waveguide-fed microstrip patch antennas’, Electron. Lett., 2005, 41, (22), pp. 12021203.
    24. 24)
      • 15. Kharkovsky, S., Zoughi, R.: ‘Microwave and millimeter wave non-destructive testing and evaluation – overview and recent advances’, IEEE Instrum. Meas. Mag., 2007, 10, (2), pp. 2638.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2016.0370
Loading

Related content

content/journals/10.1049/iet-map.2016.0370
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address