access icon free Bandwidth and radiation specifications enhancement of monopole antennas loaded with split ring resonators

New broadband antennas loaded with split ring resonators (SRR) are proposed and investigated. The results illustrate that by loading the conventional monopole antennas with an asymmetrical meander lines SRR, a lower resonance frequency mode can be excited. The dimensions of the SRR have been selected to provide a resonance close the resonance of the monopole antennas. The results illustrate that when both resonance coincide the antennas bandwidths and radiation properties can be enhanced. The length and width of the antennas are 25 × 10 2 λ 0 × 11 × 10 2 λ 0 and 25 × 10 2 λ 0 × 21 × 10 2 λ 0 at 4 GHz for monopole antennas, and 29 × 10 2 λ 0 × 21 × 10 2 λ 0 at 2.9 GHz for both monopole antennas loaded with SRR. For antennas without SRR loading, maximum of measured gains and efficiencies are 3.6 dBi and 78.5% for F-antenna, and 3.9 dBi and 80.2% for T-antenna, hence they appear at 5 GHz. For antennas with SRR loading, these parameters are 4 dBi and 81.2% for F-antenna, and 4.4 dBi and ∼83% for T-antenna, which appeared at 6 GHz. By implementing the meander lines SRR as a matching load on the monopole antennas, the resulted antennas cover the measured frequency bandwidths of 2.9–6.41 GHz and 2.6–6.6 GHz (75.4 and ∼87% fractional bandwidths), which are ∼2.4 and 2.11 times more than monopole antennas with an approximately same in size.

Inspec keywords: antenna radiation patterns; monopole antennas; broadband antennas

Other keywords: bandwidth enhancement; F-antenna; asymmetrical meander lines; T-antenna; SRR; radiation specifications enhancement; bandwidth 2.6 GHz to 6.6 GHz; efficiency 80.2 percent; resonance frequency mode; efficiency 78.5 percent; broadband antennas; monopole antennas; split ring resonators

Subjects: Single antennas

References

    1. 1)
      • 23. Ansoft HFSSwww.ansoft.com/products/hf/hfss.
    2. 2)
      • 10. Engheta, N., Ziolkowski, R.W. (Eds): ‘Metamaterials: physics and engineering explorations’ (Wiley-IEEE Press, New York, NY, USA, 2006, 440 pages).
    3. 3)
    4. 4)
    5. 5)
      • 15. Caloz, C., Itoh, T.: ‘Novel microwave devices and structures based on the transmission line approach of meta-materials’. IEEE Int. Symp. on Microwave Theory and Techniques Digest, Philadelphia, USA, June 2003, pp. 195198.
    6. 6)
    7. 7)
    8. 8)
      • 16. Schussler, M., Freese, J., Jakoby, R.: ‘Design of compact planar antenna using LH-transmission lines’. IEEE MTT-S Int. Microwave Symp., June 2004, vol. 1, pp. 209212.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 24. Pozar, M.: ‘Microwave Engineering’ (Addison–Wesley, Reading, MA, 1993).
    14. 14)
    15. 15)
      • 20. Alibakhshi-Kenari, M.: ‘A new compact UWB traveling-wave antenna based on CRLH-TLs for embedded electronic systems’, Int. J. Microw. Wireless Tech., 2014, pp. 14, doi: http://dx.doi.org/10.1017/S1759078714001020.
    16. 16)
      • 14. Sanada, A., Caloz, C., Itoh, T.: ‘Zeroth order resonance in the left-handed transmission line’, IEICE Trans. Electron., 2004, 87-C, (1), p. 17.
    17. 17)
      • 19. Lee, C.J., Leong, K.M.H., Itoh, T.: ‘Broadband small antenna for portable wireless application’. Int. Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, iWAT 2008, 4–6 March 2008, pp. 1013.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 11. Caloz, C., Itoh, T.: ‘Electromagnetic metamaterials: transmission line theory and microwave applications, the engineering approach’ (John Wiley & Sons, New York, 2005, 376 pages).
    25. 25)
    26. 26)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2015.0172
Loading

Related content

content/journals/10.1049/iet-map.2015.0172
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading