access icon free Fast surrogate-assisted simulation-driven optimisation of add-drop resonators for integrated photonic circuits

Computationally feasible and efficient simulation-driven optimisation of add-drop resonators for integrated photonic circuits is discussed. The approach exploits modelling of critical features of the otherwise highly non-linear responses, and almost linear dependence of these features on designable parameters. This, as well as a suitable formulation of the objective function and embedding the optimisation process in the trust-region framework, allows us to greatly reduce the computational effort in terms of the number of full-wave simulations of the photonic component of interest necessary to find its optimised design. Operation and efficiency of the proposed technique is demonstrated using the example of a 6-µm high index contrast add-drop microring resonator.

Inspec keywords: integrated optoelectronics; optical resonators; optimisation; silicon-on-insulator

Other keywords: nonlinear response; full-wave simulations; integrated photonic circuits; trust-region framework; optical communication systems; high index contrast add-drop microring resonator; photonic component; surrogate-assisted simulation-driven optimisation

Subjects: Integrated optoelectronics; Optimisation techniques; Optical communication equipment; Metal-insulator-semiconductor structures

References

    1. 1)
      • 20. Conn, A.R., Gould, N.I.M., Toint, P.L.: ‘Trust region methods’ (MPS-SIAM Series on Optimization, 2000).
    2. 2)
      • 10. Echeverria, D., Hemker, P.W.: ‘Space mapping and defect correction’, CMAM Int. Math. J. Comput. Methods Appl. Math., 2005, 5, (2), pp. 107136.
    3. 3)
    4. 4)
      • 6. Taflove, A., Hagness, S.C.: ‘Computational electrodynamics: the finite-difference time-domain method’ (Artech House, 2005).
    5. 5)
    6. 6)
      • 13. De Heyn, P., Kuyken, B., Vermeulen, D., Bogaerts, W., Van Thourhout, D.: ‘Improved intrinsic Q of silicon-on-insulator microrong resonators using TM-polarized light’. Proc. IEEE Photonics Benelux Chapter Symp., Delft, Netherlands, 2010, pp. 197200.
    7. 7)
    8. 8)
      • 4. Lowery, A.J.: ‘Computer-aided photonic design’. IEEE Spectrum, April 1997, pp. 2631.
    9. 9)
    10. 10)
      • 15. CST Studio Suite, ver. 2011, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2011.
    11. 11)
    12. 12)
    13. 13)
      • 14. De Heyn, P., Kuyken, B., Vermeulen, D., Bogaerts, W., Van Thourhout, D.: ‘High-performance low-loss Silicon-on-insulator microring resonators using TM-polarized light’. Optical Fiber Communication Conf. and Exposition (OFC/NFOEC), and the National Fiber Optic Engineers Conf. (OFC/NFOEC 2011), Los Angeles, CA, 6–10 March 2011, pp. 13.
    14. 14)
      • 16. Collette, Y., Siarry, P.: ‘Multiobjective optimization: principles and case studies’ (Springer, 2003).
    15. 15)
      • 7. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: ‘Surrogate-based analysis and optimization’, Prog. Anal. At. Spectrosc., 2005, 41, (1), pp. 128.
    16. 16)
    17. 17)
      • 9. Koziel, S., Bandler, J.W., Madsen, K.: ‘Towards a rigorous formulation of the space mapping technique for engineering design’. Proc. Int. Symp. Circuits, System, ISCAS, vol. 1, 2005, pp. 56055608.
    18. 18)
    19. 19)
    20. 20)
      • 5. Gallaher, D.: ‘Photonic CAD matures’. IEEE LEOS Newsletter, February 2008, pp. 714.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2014.0120
Loading

Related content

content/journals/10.1049/iet-map.2014.0120
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading