access icon free Improving dynamic range of software-defined radio receivers for multi-carrier wireless systems

This study presents an architecture to increase the instantaneous dynamic range of multi-carrier wideband digital receivers. The proposed topology includes a directional coupler followed by two parallel analog-to-digital converters and digital signal processing to reconstruct the signal. It will be shown that the proposed technique is able to increase the dynamic range of software-defined radio (SDR) receivers for multiband signals presenting certain statistical patterns. The concept is validated by simulations and measurements of a real SDR front-end receiver for multiband communications scenario, which will demonstrate improvements in the order of 6 dB when compared to existing alternatives.

Inspec keywords: radio receivers; signal reconstruction; software radio; analogue-digital conversion

Other keywords: multiband communications scenario; multicarrier wideband digital receivers; directional coupler; real SDR front-end receiver; signal reconstruction; software-defined radio receivers; statistical patterns; parallel analog-to-digital converters; multicarrier wireless systems; digital signal processing

Subjects: Signal processing and detection; Radio links and equipment

References

    1. 1)
    2. 2)
      • 16. Gregers-Hansen, V., Brockett, S.M., Cahill, P.E.: ‘A stacked A-to-D converter for increased radar signal processor dynamic range’. Proc. IEEE Radar Conf., May 2001, pp. 169174.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 17. Cruz, P.M., Carvalho, N.B.: ‘Architecture for dynamic range extension of analog-to-digital conversion’. IEEE Int. Microwave Workshop Series on RF Front-ends for Software Defined and Cognitive Radio Solutions, Aveiro, Portugal, February 2010.
    7. 7)
    8. 8)
      • 20. Chen, Y., Pollok, A., Haley, D., Davis, L.M.: ‘ADC diversity for software defined radios’. SDR – Wireless Innovation Forum, Washington, DC, January 2013.
    9. 9)
      • 22. Hittite Microwave Corp.: ‘70 dB extended dynamic range SDLVA using HMC913LC4B’. Application Note, Chelmsford, MA, 2010.
    10. 10)
      • 4. Cruz, P.M., Carvalho, N.B.: ‘Enhanced architecture to increase the dynamic range of SDR receivers’. IEEE Radio and Wireless Symp., Phoenix, AZ, January 2011, pp. 331334.
    11. 11)
      • 19. Lin, Y., Doris, K., Janssen, E., Zanikoupolos, A., Murroni, A., van der Weide, G., Hegt, H., van Roermund, A.: ‘An 11b 1GS/s ADC with parallel sampling architecture to enhance SNDR for multi-carrier signals’. Proc. ESSCIRC, September 2013, pp. 121124.
    12. 12)
      • 15. Doris, K.: ‘Data processing device comprising ADC unit’. U.S. Patent no. 7944383, May 2011.
    13. 13)
      • 21. Agilent Technologies Inc.: ‘4 steps for making better power measurements’. Application Note no. 5965–8167E, Santa Clara, CA, June 4, 2008.
    14. 14)
    15. 15)
    16. 16)
      • 5. Tsui, J.B.: ‘Digital techniques for wideband receivers’ (SciTech Publishing, Inc., Raleigh, NC, 2004, 2nd edn.).
    17. 17)
      • 14. Caduff, C., Caillet, R.: ‘ADC with dynamic range extension’. U.S. Patent no. 7365664, April 2008.
    18. 18)
    19. 19)
    20. 20)
      • 8. Reeder, R., Looney, M., Hand, J.: ‘Pushing the state of the art with multichannel A/D converters’, Analog Dialogue (Analog Devices, Inc., Norwood, MA, 2005), vol. 39, (2), pp. 710.
    21. 21)
      • 12. Oberhammer, W., Li, B.: ‘Dynamic range extension of wideband receiver’. U.S. Patent no. 6333707, December 2001.
    22. 22)
      • 24. Cruz, P.M., Carvalho, N.B.: ‘PAPR evaluation in multi-mode SDR transceivers’. Proc. 38th European Microwave Conf., Amsterdam, Netherlands, October 2008, pp. 13541357.
    23. 23)
      • 25. Gharaibeh, K.M., Gard, K.G., Steer, M.B.: ‘Accurate estimation of digital communication system metrics – SNR, EVM andρ in a nonlinear amplifier environment’. Proc. 64th ARFTG Microwave Measurements Conf., Orlando, FL, December 2004, pp. 4144.
    24. 24)
    25. 25)
      • 13. Francis, C.L.: ‘Large dynamic range digitizing apparatus and method’. U.S. Patent no. 6445328, September 2002.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2013.0692
Loading

Related content

content/journals/10.1049/iet-map.2013.0692
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading