access icon free THB-filled monolithic rectangular waveguides for millimeter wave applications

A monolithic wafer-level dielectric-filled rectangular waveguide for millimeter-wave applications is designed and fabricated. Unlike the existing wafer-level rectangular waveguides that are based on hybrid integration techniques to assemble the waveguide, the three-step fabrication process of the proposed waveguide enables the simultaneous monolithic fabrication of the dielectric-filled waveguide as well as planar circuitry on one substrate. The maximum temperature during the entire fabrication process stays lower than 200 °C which is desirable for integrated circuit (IC) fabrication. Besides, the RF performance of the presented waveguide only depends on the RF properties of the filling dielectric not the carrier substrate (as in the case of Substrate Integrated Waveguides), which makes it ideal for silicon micro-fabrication technology. A negative-tone thick photoresist called THB N151 which can reach a thickness of 90 μm by single spinning is used and characterised. The results show a relative permittivity of ɛr′ = 3 and a loss tangent of tanδ = 0.018 for THB 151 which surpasses the RF performance of the highly used SU8 photoresist. An average insertion loss of 0.21 dB/mm is measured for the THB-filled waveguide for the frequency range of 35–50 GHz. To perform the wafer-level measurements, the waveguide is integrated with CPW to rectangular transition. Furthermore, it has been illustrated that other monolithic waveguide structures such as Turn or Y-junction can be potentially developed by using the proposed solution.

Inspec keywords: photoresists; coplanar waveguides; permittivity; microfabrication; MIMIC; rectangular waveguides; dielectric-loaded waveguides

Other keywords: SU8 photoresist; planar circuitry; THB-filled monolithic rectangular waveguides; substrate integrated waveguides; wafer-level measurements; Turn-junction; size 90 mum; Y-junction; monolithic waveguide structures; frequency 35 GHz to 50 GHz; hybrid integration techniques; three-step fabrication process; millimeter wave applications; monolithic wafer-level dielectric-filled rectangular waveguide; CPW; IC fabrication; rectangular transition; monolithic fabrication; THB N151; RF performance; relative permittivity; silicon microfabrication technology; negative-tone thick photoresist

Subjects: Microwave integrated circuits; Waveguides and microwave transmission lines

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
      • 12. Deslandes, D., Wu, K.: ‘Integrated transition of coplanar to rectangular waveguides’. Microwave Symposium Digest, IEEE MTT-S Int., February 2001, pp. 619622.
    20. 20)
      • 36. Pozar, D.M.: ‘Microwave engineering’ (Wiley, 2004), chap 3.
    21. 21)
      • 30. Llamas-Garro, I., Kim, Y., Baek, C-K., Kim, Y-K.: ‘A planar high-Q micromachined monolithic half-coaxial transmission-line filter’, IEEE Trans. Microw. Theory Tech, 2006, 54, (12), pp. 41614168 (doi: 10.1109/TMTT.2006.886369).
    22. 22)
      • 35. Ghannam, A., Viallon, C., Bourrier, D., Parra, T.: ‘Dielectric microwave characterization of the SU-8 thick resin used in an above IC process’. European Microwave Conf., 2009, EuMC 2009, 2009, pp. 10411044.
    23. 23)
      • 29. Vahabisabi, N., Daneshmand, M.: ‘Thick THB sacrificial layer and metal encapsulation process’. Proc. Second Micro-System and Nano-Electronics Research Conf. (MNRC 2009), pp. 144147.
    24. 24)
      • 23. Stephens, D., Young, P.R., Robertson, I.D.: ‘Millimeter-wave substrate integrated waveguides and filters in photoimageable thick-film technology’, IEEE Trans. Microw. Theory Tech., 2005, 53, (12), pp. 38323838 (doi: 10.1109/TMTT.2005.859862).
    25. 25)
      • 31. Kim, Y., Llamas-Garro, I., Baek, C-W., Kim, Y-K.: ‘New release technique of a thick sacrificial layer and residue effects on novel half-coaxial transmission line filters’, J. Micromech. Microeng., 2009, 16, pp. 16.
    26. 26)
      • 28. Kim, Y., Llamas-Garro, I., Baek, C-W., Kim, Y-K.: ‘A monolithic surface micromachined half-coaxial transmission line filter’. 19th IEEE Int. Conf. on MEMS, Istanbul, 2006, pp. 870873.
    27. 27)
      • 22. Aftanasar, M.S., Young, P.R., Robertson, I.D., Minalgiene, J., Lucyszyn, S.: ‘Photoimageable thick-film millimetre-wave metal-pipe rectangular waveguides’, IEE Electron. Lett., 2001, 37, (18), pp. 11221123 (doi: 10.1049/el:20010750).
    28. 28)
      • 5. Collins, C.E., Miles, R.E., Pollard, R.D., et al: ‘Technique for micro-machining millimetre-wave rectangular waveguide’, Electron. Lett., 1998, 34, (10), pp. 996997 (doi: 10.1049/el:19980665).
    29. 29)
      • 33. Dewdney, J.M., Wang, J.: ‘Characterization the microwave properties of SU-8 based on microstrip ring resonator’. Wireless and Microwave Technology Conf., 2009, WAMICON '09. IEEE 10th Annual, 20–21 April 2009, pp. 15.
    30. 30)
      • 21. Aftanasar, M.S., Young, P.R., Robertson, I.D., Lucyszyn, S.: ‘Fabrication of dielectric-filled rectangular waveguide using thick-film processing’. Proc. Sixth IEEE High Frequency Postgraduate Student Colloq., 2001, pp. 8287.
    31. 31)
      • 14. Germain, S., Deslandes, D., Wu, K.: ‘Development of substrate integrated waveguide power dividers’. Canadian Conf. on Electrical and Computer Engineering, 2003, IEEE CCECE 2003, May 2003, vol. 3, pp. 19211924.
    32. 32)
      • 1. Collins, C.E., Miles, R.E., Digby, J.W., et al: ‘A new micro-machined millimeter-wave and terahertz snap-together rectangular waveguide technology’, IEEE Microw. Guid. Wave Lett., 1999, 9, (2), pp. 6365 (doi: 10.1109/75.755047).
    33. 33)
      • 32. Wang, Y., Ke, M., Lancaster, M.J., Huang, F.: ‘Micromachined millimeter-wave rectangular-coaxial branch-line coupler with enhanced bandwidth’, IEEE Trans. Microw. Theory Tech., 2009, 57, (7), pp. 16551660 (doi: 10.1109/TMTT.2009.2021872).
    34. 34)
      • 37. Vahabisani, N., Daneshmand, M.: ‘A new wafer-level CPW to waveguide transition for millimeter-wave applications’. Proc. 2011 IEEE Int. Symp. on Antennas and Propagation (APSURSI), 2011, pp. 869872.
    35. 35)
      • 15. Menzal, W., Kassner, J.: ‘Millimeter-wave 3-D integration techniques using LTCC and related multilayer circuits’. Proc. 30th European Microwave Conf., Paris, France, 2000, pp. 3353.
    36. 36)
      • 17. Lucyszyn, S., Wang, Q.H., Robertson, I.D.: ‘0.1 THz rectangular waveguide on GaAs semi-insulating substrate’, IEE Electron. Lett., 1995, 31, (9), pp. 721722 (doi: 10.1049/el:19950480).
    37. 37)
      • 27. Rao, V.S., Kripesh, V., Yoon, S.W., Tay, A.: ‘A thick photoresist process for advanced wafer level packaging applications using JSR THB-151N negative tone UV photoresist’, J. Micromech. Microeng., 2006, 16, pp. 18411846 (doi: 10.1088/0960-1317/16/9/012).
    38. 38)
      • 16. Hiroshi, U., Takeshi, T., Fujii, M.: ‘Development of a ‘laminated waveguide’, IEEE Trans. Microw. Theory Tech., 1998, 46, (12), pp. 24382443 (doi: 10.1109/22.739232).
    39. 39)
      • 13. Grigoropoulos, N., Sanz-Izquierdo, B., Young, P.R.: ‘Substrate integrated folded waveguides (SIFW) and filters’, IEEE Microw. Wirel. Compon. Lett., 2005, 15, (12), pp. 829831 (doi: 10.1109/LMWC.2005.860027).
    40. 40)
      • 7. Popovic, Z., Rondineau, S., Filipovic, D., et al: ‘An enabling new 3D architecture for microwave components and systems’, Microwave Journal, 2008, 51, (2), pp. 6676.
    41. 41)
      • 2. Becker, J.P., East, J.R., Katehi, L.P.B.: ‘Performance of silicon micromachined waveguide at W-band’, Electron. Lett., 2002, 38, (1), pp. 638639 (doi: 10.1049/el:20020457).
    42. 42)
      • 10. Oliver, J.M., Rollin, J., Vanhille, K., Raman, S.: ‘A W-band micromachined 3-D cavity-backed patch antenna array with integrated diode detector’, IEEE Trans. Microw. Theory Tech., 2012, 60, (2), pp. 284292 (doi: 10.1109/TMTT.2011.2176507).
    43. 43)
      • 6. Cohen, A., Zhang, G., Tseng, F., Mansfield, F., Frodis, U., Will, P.: ‘EFAB: rapid low-cost desktop micromachining of high aspect ratiotrue 3-D MEMS’. IEEE Int. Microelectromech. Syst. Conf., January 1999, pp. 244251.
    44. 44)
      • 19. Lucyszyn, S.: ‘The future of on-chip terahertz metal-pipe rectangular waveguides implemented using micromachining and multilayer technologies’. IEE Colloquium Digest on Terahertz Technology and its Applications, London, April 1997, pp. 10/110.
    45. 45)
      • 8. Yan, W.D., Mansour, R.R.: ‘Micromachined millimeter-wave ridge waveguide filter with embedded MEMS tuning elements’. IEEE MTT-S Symp. Digest, 2006, pp. 12901293.
    46. 46)
      • 11. Deslandes, D., Wu, K.: ‘Integrated microstrip and rectangular waveguide in planar form’, IEEE Microw. Wirel. Compon. Lett., 2001, 11, (2), pp. 6870 (doi: 10.1109/7260.914305).
    47. 47)
      • 24. Henry, M., Free, C.E., Izqueirdo, B.S., Batchelor, J.C., Young, P.: ‘Millimeter wave substrate integrated waveguide antennas: design and fabrication analysis’, IEEE Trans. Adv. Packag., 2009, 32, (1), pp. 93100 (doi: 10.1109/TADVP.2008.2011284).
    48. 48)
      • 34. Mbairi, F.D., Hesselbom, H.: ‘High frequency design and characterization of SU-8 based conductor backed coplanar waveguide transmission lines’. Proc. Int. Symp. on Advanced Packaging Materials: Processes, Properties and Interfaces, 2005, 2008, pp. 243248.
    49. 49)
      • 20. Lucyszyn, S., Silva, S.R.P., Robertson, I.D., et al: ‘Terahertz multi-chip module (T-MCM) technology for the 21st century’. IEE Colloquium Digest on Multi-Chip Modules and RFICs, London, May 1998, pp. 6/18.
    50. 50)
      • 38. Rebeiz, G.M.: ‘RF MEMS: theory, design, and technology’ (Wiley-Interscience, 2003), ch. 4.
    51. 51)
      • 3. McGrath, W.R., Walker, C., Yap, M., Tai, Y.C.: ‘Silicon micro-machined waveguides for millimeter-wave and submillimeter-wave frequencies’, IEEE Microw. Guid. Wave Lett., 1999, 3, (3), pp. 6163 (doi: 10.1109/75.205665).
    52. 52)
      • 25. Digby, J.W., McIntosh, C.E., Parkhurst, G.M., et al: ‘Fabrication and characterization of micromachined rectangular waveguide components for use at millimeter-wave and terahertz frequencies’, IEEE Trans. Microw Theory Tech., 2000, 48, (8), pp. 12931302 (doi: 10.1109/22.859472).
    53. 53)
      • 4. Sammoura, F., Su, Y-C., Cai, Y., et al: ‘Microfabricated plastic 95-GHz rectangular waveguide’. Proc. 18th IEEE Int. Conf. on Micro Electro Mechanical Systems, MEMS 2005, 30 January–3 February 2005, pp. 167170.
    54. 54)
      • 9. Reid, J.R., Marsh, E.D., Webster, R.T.: ‘Micromachined rectangular-coaxial transmission lines’, IEEE Trans. Microw. Theory Tech., 2006, 54, (8), pp. 34333442 (doi: 10.1109/TMTT.2006.879133).
    55. 55)
      • 26. Vahabisabi, N., Daneshmand, M.: ‘Monolithic on-wafer rectangular waveguide and its transition to CPW lines’. European Microwave Conf. 2012, EuMW, Amsterdam, Netherland, 2012, pp. 289292.
    56. 56)
      • 18. Lucyszyn, S., Budimir, D., Wang, Q.H., Robertson, I.D.: ‘Design of compact monolithic dielectric-filled metal-pipe rectangular waveguides for millimetre-wave applications’, IEE Proc. Microw. Antennas Propag., 1996, 143, (5), pp. 451453 (doi: 10.1049/ip-map:19960761).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2013.0465
Loading

Related content

content/journals/10.1049/iet-map.2013.0465
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading