access icon free Robust, electrically small, circular inverted-F antenna for energy-efficient wireless microsensors

The size of wireless microsensors is fundamentally limited by the bulk of the antenna and the energy pool; total energy efficiency and battery size are determined by total antenna efficiency. A printed circular inverted-F antenna (CIFA) is mirrored against a small, crescent-like ground plane (GNDP). The CIFA is printed on a discoid substrate that conforms to the element, the GNDP and the circumscribing sphere. It is an electrically small element designed with only three parameters: two angles and a radius. The CIFA-plus-GNDP radiator is resonant and matched at 2.5 GHz, where numerical results indicate that it achieves a 3.4% fractional bandwidth (FBW) combined with over 90% of efficiency, exhibits a near-isotropic gain pattern (8 dB deviation), and approaches Thal's limit on minimum Q-factor within 43%. The prototype CIFA achieves the required half-radian size while scoring FBW = 3.1% (55% deviation from minimum Q) and 89.5–91.5% efficiency. Two problems pertinent to the design of small antennas for miniature portable devices are also discussed. First, an upper bound on achievable directivity is proposed, which facilitates quick assessment of antenna feasibility as a function of specified electrical size. Then, a forecast model for the prediction of minimum required operating frequency is developed based on the properties of the equivalent circuit at antenna input.

Inspec keywords: microsensors; energy conservation; wireless sensor networks; equivalent circuits; Q-factor; antenna radiation patterns; planar inverted-F antennas

Other keywords: crescent like ground plane; circumscribing sphere; directivity; upper bound; FBW; battery size determination; fractional bandwidth; frequency 2.5 GHz; antenna efflciency; near isotropic gain pattern; small antenna; equivalent circuit; CIFA prototype; forecast model; miniature portable devices; printed circular inverted-F antenna; antenna feasibility assessment; energy efficient wireless microsensors; discoid substrate; Q-factor; CIFA-plus-GNDP radiator

Subjects: Microsensors and nanosensors; Wireless sensor networks; Single antennas

References

    1. 1)
      • 30. Kakoyiannis, C.G.: ‘Hybrid antenna efficiency measurements in fixed-geometry Wheeler caps by wideband Q-factor estimation’. Proc. 2013 Loughborough Antennas Propag. Conf. (LAPC 2013), Loughborough, UK, November 2013, pp. 524529.
    2. 2)
      • 2. Cook, B.W., Lanzisera, S., Pister, K.S.J.: ‘SoC issues for RF smart dust’. Proc. IEEE, June 2006, vol. 94, pp. 11771196.
    3. 3)
      • 32. Harrington, R.F.: ‘Effect of antenna size on gain, bandwidth, and efficiency’, J. Res. Nat. Bur. Stand., 1960, 64, (1), pp. 112.
    4. 4)
    5. 5)
    6. 6)
      • 28. Lymberopoulos, D., Lindsey, Q., Savvides, A.: ‘An empirical characterization of radio signal strength variability in 3-D IEEE 802.15.4 networks using monopole antennas’, in Römer, K., Karl, H., Mattern, F. (Eds.): ‘Wireless Sensor Networks’, ser. Lecture Notes in Computer Science, (Springer Berlin Heidelberg, 2006), vol. 3868, pp. 326341.
    7. 7)
      • 20. Johansson, A., Karlsson, A., Scanlon, W., Evans, N., Rahmat-Samii, Y.: ‘Medical implant communication systems’, in Hall, P.S., Hao, Y. (Eds.): ‘Antennas and Propagation for Body-Centric Wireless Communications’ (Artech House, Norwood, MA, 2006, 1st edn.), ch. 9, pp. 241270.
    8. 8)
      • 27. Computer Simulation Technology AG: ‘CST MICROWAVE STUDIO – Workflow & Solver Overview, ver. 2012’ (Computer Simulation Technology AG, Darmstadt, Germany, 2011).
    9. 9)
      • 26. Taconic ADD: ‘Advanced PCB Materials Product Selection Guide’ (Taconic, Petersburgh, NY, USA, 2010).
    10. 10)
      • 29. Agilent Technologies (now Keysight Technologies): ‘Agilent Technologies PNA Series Network Analyzers N5230A/C Options 140, 145, 146, 240, 245, 246 (4-Port PNA-L) Technical Specifications’ (Agilent Technologies Inc., Santa Rosa, CA, USA, 2008).
    11. 11)
      • 5. Staub, O.: ‘Electrically small antennas’. Dr.Sci.Tech. dissertation, Département d’Électricité, École Polytechnique Fédérale de Lausanne, Switzerland, 2001.
    12. 12)
      • 25. Ouwerkerk, M., Pasveer, F., Langereis, G.: ‘Unobtrusive sensing of psychophysiological parameters’, in Westerink, J.H.D.M., Ouwerkerk, M., Overbeek, T.J.M., et al (Ed.): ‘Probing Experience’ (ser. Philips Research Book Series, 2008), vol. 8, no. 2, pp. 163193.
    13. 13)
      • 16. Kakoyiannis, C.G., Constantinou, P.: ‘Compact, slotted, printed antennas for dual-band communication in future wireless sensor networks’, Int. J. Antennas Propag., 2012, special issue ‘Advances in Antennas for Wireless Identification and Sensing Systems’, 2013, article ID 873234, 17 pages.
    14. 14)
    15. 15)
      • 23. Ouwerkerk, M.: Miniature wireless sensor devices. Philips Research, October2005. Available at: http://www.futuretechnologycenter.eu/downloads/sand.pdf.
    16. 16)
      • 22. Kakoyiannis, C.G., Constantinou, P.: ‘Electrically small, circular inverted-F antenna based on a robust, minimal design space’. Proc. 42nd European Microwave Conf. (EuMC'12), Amsterdam, The Netherlands, 29 October–1 November 2012, pp. 404407.
    17. 17)
    18. 18)
      • 9. Kruesi, C., Tentzeris, M.M.: ‘Magic-Cube antenna configurations for ultra compact RFID and wireless sensor nodes’. Proc. IEEE Antennas Propag. Soc. Int. Symp. (AP-S 2008), San Diego, CA, USA, July 2008.
    19. 19)
    20. 20)
      • 24. Ouwerkerk, M., Pasveer, F., Engin, N.: ‘SAND: a modular application development platform for miniature wireless sensors’. Proc. Int. Workshop on Wearable Implantable Body Sensor Networks (BSN 2006), Cambridge, MA, USA, April 2006, pp. 166170.
    21. 21)
      • 31. Kakoyiannis, C.G.: ‘Post-processing accuracy enhancement of the improved Wheeler cap for wideband antenna efficiency measurements’. Eighth European Conf. Antennas Propagation (EuCAP 2014), The Hague, The Netherlands, April 2014, pp. 306310.
    22. 22)
    23. 23)
      • 17. Kakoyiannis, C.G., Constantinou, P.: ‘Compact WSN antennas of analytic geometry based on Chebyshev polynomials’. Proc. 2012 Loughborough Antennas Propag. Conf. (LAPC 2012), Loughborough, UK, November 2012.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 8. Best, S.R.: ‘Small antennas’, in Volakis, J.L. (Ed.): ‘Antenna Engineering Handbook’ (McGraw-Hill, New York, 2007, 4th edn.), Ch. 6.
    28. 28)
    29. 29)
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2013.0441
Loading

Related content

content/journals/10.1049/iet-map.2013.0441
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading