http://iet.metastore.ingenta.com
1887

Inkjet-printed antennas, sensors and circuits on paper substrate

Inkjet-printed antennas, sensors and circuits on paper substrate

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Microwaves, Antennas & Propagation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Inkjet-printing is a very promising technology for the development of microwave circuits and components. Inkjet-printing technology of conductive silver nanoparticles on an organic flexible paper substrate is introduced in this study. The paper substrate is characterised using the T-resonator method. A variety of microwave passive and active devices, as well as complete circuits inkjet-printed on paper substrates are introduced. This work includes inkjet-printed artificial magnetic conductor structures, a substrate integrated waveguide, solar-powered beacon oscillator for wireless power transfer and localisation, energy harvesting circuits and nanocarbon-based gas-sensing materials such as carbon nanotubes and graphene. This study presents an overview of recent advances of inkjet-printed electronics on paper substrate.

References

    1. 1)
      • 1. Mager, D., Peter, A., Del Tin, L., et al: ‘An MRI receiver coil produced by inkjet printing directly on to a flexible substrate’, IEEE Trans. Imag., 2010, 29, (2), pp. 482487 (doi: 10.1109/TMI.2009.2036996).
    2. 2)
      • 2. Basiricò, L., Cosseddu, P., Fraboni, B., Bonfiglio, A.: ‘Inkjet printing of transparent, flexible, organic transistors’, Thin Solid Films, 2011, 520, (4), pp. 12911294 (doi: 10.1016/j.tsf.2011.04.188).
    3. 3)
      • 3. Rida, A., Yang, L., Vyas, R., Tentzeris, M.M.: ‘Conductive inkjet-printed antennas on flexible low-cost paper-based substrates for RFID and WSN applications’, IEEE Antenna Propag. Mag., 2009, 51, (3), pp. 1323 (doi: 10.1109/MAP.2009.5251188).
    4. 4)
      • 4. Yang, L., Tentzeris, M.M.: ‘Design and characterization of novel paper-based inkjet-printed RFID and microwave structures for telecommunication and sensing applications’. IEEE MTT-S Int. Microwave Symp. Digest, 2007, pp. 16331636.
    5. 5)
      • 5. Mishima, T., Tanaka, K., Abe, N., Taki, H.: ‘Toward construction of a mobile system with long-range RFID sensors’. Proc. IEEE Cybernetics Intelligent System Conf., 2004, vol. 2, pp. 960965.
    6. 6)
      • 6. Vyas, R., Lakafosis, V., Lee, H., et al: ‘Inkjet printed, self -powered, wireless sensors for environmental, gas, and authentication-based sensing’, IEEE Sens. J., 2011, 11, (12), pp. 31393152 (doi: 10.1109/JSEN.2011.2166996).
    7. 7)
      • 7. Yang, L., Rida, A., Vyas, R., Tentzeris, M.M.: ‘RFID tag and RF structures on a paper substrate using inkjet-printing technology’, IEEE Trans. Microw. Theory Techn., 2007, MTT 55, (12), pp. 28942901 (doi: 10.1109/TMTT.2007.909886).
    8. 8)
      • 8. Lakafosis, V., Rida, A., Vyas, R., Li, Y., Nikolaou, S., Tentzeris, M.M.: ‘Progress towards the first wireless sensor networks consisting of inkjet-printed, paper-based RFID-enabled sensor tags’, Proc. IEEE, 2010, 98, (9), pp. 16011609 (doi: 10.1109/JPROC.2010.2049622).
    9. 9)
      • 9. Yi, L., Torah, R., Beeby, S., Tudor, J.: ‘An all-inkjet printed flexible capacitor for wearable applications’. 2012 Symp. Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2012, pp. 192195.
    10. 10)
      • 10. Maekawa, K., Yamasaki, K., Niizeki, T., et al: ‘Drop-on-demand laser sintering with silver nanoparticles for electronics packaging’, IEEE Trans. Compon. Pack. Manuf. Technol., 2012, 2, (5), pp. 868877 (doi: 10.1109/TCPMT.2011.2178606).
    11. 11)
      • 11. Polzinger, B., Schoen, F., Matic, V., et al: ‘UV-sintering of inkjet-printed conductive silver tracks’. 2011 11th IEEE Conf. on Nanotechnology (IEEE-NANO), 2011, pp. 201204.
    12. 12)
      • 12. Allen, M., Alastalo, A., Suhonen, M., Mattila, T., Leppäniemi, J., Seppa, H.: ‘Contactless electrical sintering of silver nanoparticles on flexible substrates’, IEEE Trans. Microw. Theory Techn., 2011, 59, (5), pp. 14191429 (doi: 10.1109/TMTT.2011.2123910).
    13. 13)
      • 13. Cook, B.S., Shamim, A.: ‘Inkjet printing of novel wideband and high gain antennas on low-cost paper substrate’, IEEE Trans. Antenna Propag., 2012, 60, (9), pp. 41484156 (doi: 10.1109/TAP.2012.2207079).
    14. 14)
      • 14. Caglar, U., Kaija, K., Mansikkamäki, P.: ‘Analysis of mechanical performance of silver inkjet-printed structures’. Second IEEE Int. Nanoelectronics Conf. 2008 (INEC 2008), 2008, pp. 851856.
    15. 15)
      • 15. Thompson, D.C., Tantot, O., Jallageas, H., Ponchak, G.E., Tentzeris, M.M., Papapolymerou, J.: ‘Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz’, IEEE Trans. Microw. Theory Techn., 2004, MTT 52, (4), pp. 13431352 (doi: 10.1109/TMTT.2004.825738).
    16. 16)
      • 16. Latti, K.P., Kettunen, M., Strom, J.P., Silventoinen, P.: ‘A review of microstrip T-resonator method in determining the dielectric properties of printed circuit board materials’, IEEE Trans. Instrum. Meas., 2007, 56, (5), pp. 18451850 (doi: 10.1109/TIM.2007.903587).
    17. 17)
      • 17. Chang, K., Hsieh, L.-H.: ‘Microwave ring circuits and related structures’ (Wiley, 2004).
    18. 18)
      • 18. Fulford, A.R., Wentworth, S.M.: ‘Conductor and dielectric-property extraction using microstrip tee resonators’, Microw. Optic. Technol. Lett., 2005, 47, pp. 1416 (doi: 10.1002/mop.21067).
    19. 19)
      • 19. Shaker, G., Safavi-Naeini, S., Sangary, N., Tentzeris, M.M.: ‘Inkjet printing of ultrawideband (UWB) antennas on paper-based substrates’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 111114 (doi: 10.1109/LAWP.2011.2106754).
    20. 20)
      • 20. Parker, E.A., Hamdy, S.M.A.: ‘Rings as elements for frequency selective surfaces’, Electron. Lett., 1981, 17, pp. 612614 (doi: 10.1049/el:19810430).
    21. 21)
      • 21. Parker, E.A., El Sheikh, A.N.A.: ‘Convoluted array elements and reduced size unit cells for frequency-selective surfaces’, Proc. Inst. Electr. Eng. H, Microw. Antennas Propag., 1991, 138, pp. 1922 (doi: 10.1049/ip-h-2.1991.0004).
    22. 22)
      • 22. Shung-Wu, L., Zarrillo, G., Chak-Lam, L.: ‘Simple formulas for transmission through periodic metal grids or plates’, IEEE Trans. Antennas Propag., 1982, 30, pp. 904909 (doi: 10.1109/TAP.1982.1142923).
    23. 23)
      • 23. Shaker, G., Lee, H., Duncan, K., Tentzeris, M.: ‘Integrated antenna with inkjet-printed compact artificial magnetic surface for UHF applications’. 2010 IEEE Int. Conf. on Wireless Information Technology and Systems (ICWITS), 2010, pp. 14.
    24. 24)
      • 24. Sievenpiper, D., Broas, R., Yablonovitch, E.: ‘Antennas on high-impedance ground planes’, IEEE MTT-S Int. Microw. Symp. Dig., 1999, 3, pp. 12451248 (doi: 10.1109/MWSYM.1999.779612).
    25. 25)
      • 25. Kim, S., Ren, Y.J., Lee, H., Rida, A., Nikolaou, S., Tentzeris, M.M.: ‘Monopole antenna with inkjet-printed EBG array on paper substrate for wearable applications’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 663666 (doi: 10.1109/LAWP.2012.2203291).
    26. 26)
      • 26. Cure, D., Weller, T., Miranda, F.: ‘A comparison between Jerusalem cross and square patch frequency selective surfaces for low profile antenna applications’. Proc. 2011 Int. Conf. on Electromagnetics in Advanced Applications (ICEAA), 2011, pp. 10191022.
    27. 27)
      • 27. Cooper, J.R., Kim, S., Tentzeris, M.M.: ‘A novel polarization-independent, free-space, microwave beam splitter utilizing an inkjet-printed, 2-D array frequency selective surface’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 686688 (doi: 10.1109/LAWP.2012.2204715).
    28. 28)
      • 28. Lee, H., Kim, S., Donno, D.D., Tentzeris, M.M.: ‘A novel “universal” inkjet-printed EBG-backed flexible RFID for rugged on-body and metal mounted applications’. Proc. 2012 IEEE Int. Microwave Symp., 2012, pp. 13.
    29. 29)
      • 29. Kim, S., Tentzeris, M.M., Nikolaou, S.: ‘Wearable biomonitoring monopole antennas using inkjet printed electromagnetic band gap structures’. Proc. 2012 Sixth European Conf. on Antennas and Propagation (EUCAP), 2012, pp. 181184.
    30. 30)
      • 30. Bozzi, M., Georgiadis, A., Wu, K.: ‘Review of substrate-integrated waveguide circuits and antennas’, IET Microw. Antennas Propag., 2011, 5, (8), pp. 909920 (doi: 10.1049/iet-map.2010.0463).
    31. 31)
      • 31. Moro, R., Kim, S., Bozzi, M., Tentzeris, M.: ‘Novel inkjet-printed substrate integrated waveguide (SIW) structures on low-cost materials for wearable applications’. Proc. 42th European Microwave Conf. 2012 (EuMC 2012), 2012, pp. 7275.
    32. 32)
      • 32. Lee, J.Y., Lee, S.K., Park, J.H.: ‘Fabrication of void-free copper filled through-glass-via for wafer-level RF MEMS packaging’, Electron. Lett., 2013, 48, (17), pp. 10761077 (doi: 10.1049/el.2012.1413).
    33. 33)
      • 33. Yu, C., Sandhy, G.S., Doan, T.T.: ‘The combination of high temperature sputtering with excimer laser planarization for submicrometer contact via filling’, J. Appl. Phys., 1992, 72, (4), pp. 15991607 (doi: 10.1063/1.351676).
    34. 34)
      • 34. Kawase, T., Sirringhaus, H., Friend, R.H., Shimoda, T.: ‘Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits’, Adv. Mater., 2001, 13, (21), pp. 16011605 (doi: 10.1002/1521-4095(200111)13:21<1601::AID-ADMA1601>3.0.CO;2-X).
    35. 35)
      • 35. Ohno, I.: ‘Electrochemistry of electroless plating’, Mater. Sci. Eng. A, 1991, 146, (1), pp. 3349 (doi: 10.1016/0921-5093(91)90266-P).
    36. 36)
      • 36. Gu, J., Pike, W.T., Karl, W.J.: ‘Solder pump technology for through-silicon via fabrication’, J. Microelectromech. Syst., 2011, 20, (3), pp. 561563 (doi: 10.1109/JMEMS.2011.2127460).
    37. 37)
      • 37. Vyas, R., Lakafosis, V., Nishimoto, H., Tentzeris, M., Kawahara, Y.: ‘A battery-less, wireless mote for scavenging wireless power at UHF (470–570 MHz) frequencies’. IEEE Int. Symp. on Antennas and Propagation and USNC/URSI National Science Meeting, 2011, pp. 10691072.
    38. 38)
      • 38. Vyas, R., Nishimoto, H., Tentzeris, M., Kawahara, Y., Asami, T.: ‘A battery-less, wireless mote for scavenging wireless power at UHF (470–570 MHz) frequencies’. IEEE Int. Microwave Symp., 2012, pp. 10691072.
    39. 39)
      • 39. Chang, K., York, R.A., Hall, P.S., Itoh, T.: ‘Active integrated antennas’, IEEE Trans. Microw. Theory Techn., 2002, 50, (3), pp. 937944 (doi: 10.1109/22.989976).
    40. 40)
      • 40. Giuppi, F., Georgiadis, A., Via, S., et al: ‘A 927 MHz solar powered active antenna oscillator beacon signal generator’. 2012 IEEE Topical Conf. on Wireless Sensors and Sensor Networks (WiSNET), 2012, pp. 14.
    41. 41)
      • 41. Georgiadis, A., Collado, A., Kim, S., Lee, H., Tentzeris, M.M.: ‘UHF solar powered active oscillator antenna on low cost flexible substrate for application in wireless identification’. IEEE MTT-S IMS, 2012, pp. 13.
    42. 42)
      • 42. Kim, S., Georgiadis, A., Collado, A., Tentzeris, M.M.: ‘An inkjet-printed solar-powered wireless beacon on paper for identification and wireless power transmission applications’, IEEE Trans. Microw. Theory Techn., 2012, 60, (12), pp. 41784186 (doi: 10.1109/TMTT.2012.2222922).
    43. 43)
      • 43. Mangu, R., Rajaputra, S., Singh, V.P.: ‘MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors’, Nanotechnology, 2011, 21, pp. 1031151031153.
    44. 44)
      • 44. Lin, Z., Yao, Y., Li, Z., Liu, Y., Li, Z., Wong, C.-P.: ‘Solvent-assisted thermal reduction of graphite oxide’, J. Phys. Chem. C, 2010, 114, (35), pp. 1481914825 (doi: 10.1021/jp1049843).
    45. 45)
      • 45. Li, Z., Yao, Y., Lin, Z., Moon, K.-S., Lin, W., Wong, C.P.: ‘Ultrafast, dry microwave synthesis of graphene sheets’, J. Mater. Chem., 2010, 20, pp. 47814783 (doi: 10.1039/c0jm00168f).
    46. 46)
      • 46. Le, T., Thai, T., Lakafosis, V., et al: ‘Graphene enhanced wireless sensors’. IEEE Sensors, 2012.
    47. 47)
      • 47. Le, T., Lakafosis, V., Lin, Z., Wong, C.P., Tentzeris, M.M.: ‘Inkjet-printed graphene-based wireless gas sensor modules’. 2012 IEEE 62nd Electronic Components and Technology Conf. (ECTC), 2012, pp. 10031008.
    48. 48)
      • 48. Le, T., Lakafosis, V., Thai, T., Lin, Z., Tentzeris, M.: ‘Inkjet printing of graphene thin films for wireless sensing applications’. 2012 Int. Conf. on Electromagnetics in Advanced Applications (ICEAA), September 2012, pp. 954957.
    49. 49)
      • 49. Schedin, F., Geim, A.K., Morozov, S.V., et al: ‘Detection of individual gas molecules adsorbed on grapheme’, Nat. Mater., 2007, 6, pp. 652655 (doi: 10.1038/nmat1967).
    50. 50)
      • 50. Sharifi, H., Lahiji, R.R., Han-Chung, L., Ye, P.D., Katehi, L.P.B., Mohammadi, S.: ‘Characterization of Parylene-N as flexible substrate and passivation layer for microwave and millimeter-wave integrated circuits’, IEEE Trans. Adv. Pack., 2009, 32, pp. 8492 (doi: 10.1109/TADVP.2008.2006760).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-map.2012.0685
Loading

Related content

content/journals/10.1049/iet-map.2012.0685
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address